GPC-IP SYSTEM

S T Ui T ULURRET

TECHNICAL
MANUAL

Wheatstone Corporation
September 2009

GPC-IP Studio Turret Technical Manual

©2009 Wheatstone Corporation

N Wheat tone Cormporation
B00 Industrial Drive
New Bern, North Carolina 28562
tel 252-638-7000 / fax 252-837-1285

GPC-IP/ Sep 2009

GPC-IP CONTENTS

GPC-IP System
Table of Contents

Chapter 1 — GPC-IP Hardware

General INformationcccviiiiiic e 1-2
GP-3 Headphone Panel e s s r e n e e 1-3
Replacement Parts e 1-3
GIP-3 PINOULS .ttt ettt et a e 1-4
GIP-3 SCREMATIC . ..eeei ettt et 1-5
GIP-3 Load SNEET 1-6
GP-3-SK Headphone Panel ... 1-7a
=Y o] = ToTY o g Y=Y o | A b= U £ 1-7a
GIP-3-SK PiNOULS ...ttt e e eaeas 1-7b
GP-4S 4 Switch Mic Control Panel........cceoieieicemeecieeeeceeveeeneeeees 1-7
ReplacemMeEnt Partso e e 1-7
GIP-4S PiNOULS ...ttt ettt ettt ettt 1-8
GP-4S SChemMaAtiC ... et 1-9
GP-4S Load SNEET ... 1-10
GP-4W 4 Switch Control Panel..........oiiimimiirrvcececemnaees 1-11
ReEPIaCEMENT Parts e 1-11
[A e o Vo YU | £ P 1-12
(] YA S Yo o 1Y o o F= 1 1 3P 1-13
GP-4AW Load SNEEt 1-14
GPIP-8 8 Switch Programmable Switch Panel............cccco.......... 1-15
RepIacemMeEnt Parts e e 1-15
GIPIP-8 PiNOULS ... ettt ettt e e e e e enaas 1-16
GPIP-8 SCREMALIC ... 1-17
GPIP-8 LoAd SNEET ... oottt 1-18
GPC-1 SCREMATIC . et 1-19
GPC-1 LA SN BT . ettt 1-22
GPIP-16 16 Switch Programmable Switch Paneil....................... 1-23
Replacement Parts e 1-23
GIPIP-16 PiNOULSttt e e e e e e e e e eas 1-24
GPIP-16 SCREMATIC .. .cuiiiii et 1-25
GPIP-16 LOAd SHEET . .uieiii e e e aens 1-26
GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC Chassis Full Size Templatecccovmiimimiiceevrremcecee e 1-27
GP-3 Headphone Panel Full Size Templatecccccevveimimimnnnnee. 1-27a
GPC-IP System Parts LiSt.....oiieeie e 1-28
GPC-IP Installation Kit Parts List......c.coviimimiiiiiriceceeeaees 1-28

GPC-IP / Aug 2020 page Contents —1

GPC-IP CONTENTS

WheatNet-IP GPIP-16P Configuration Tool......................... Appendix-1

Title Page

Table Of CONTENTS ...ttt ettt ee e i
(o] 111 16 T=T o IR PO PPN ii

I oo T 5 T 1 T o PPN 3
1.1 GPIP-xx Hardware CompatiDilitycooiiiiiii e 3
2 = T 1= B Y o T PP 3
RGN o 1YY ST o o] /2N 3
I T I L PP PPN 3

2 What You Need to Get Startedcooiiiiiiiiiiii e 4
2.1 WhwatNet IP GP-16P Configuration Tool Softwarecooeiiiiiiiiiiiiiinneens 4
2.2 Physical NetWork CONNECHIONiii e e e 4
P2 I | oo Lo [YT SIS Y] o o 4
2.3.1 Changing the GP Panel’'s IP AdAressccooiiiiiiiiiiiiiiee e 5
2.4 WheatNet-1P Navigator SOftWAIE ... aeas 5
2.5 WheatNet GP-16P Help File ..o eeeas 6

3 Using GPIP-16P Configuration Tool Software

3.1 Programming ProCcedure@ SUMMATYcuiuuiuiuiiiiiieeea et e ee e eeeeaenes 7
3.2 AAAING DEVICES ...ttt ettt e et aeaans 7
3.3 SEIECHING DEVICES ..uiiiiii ettt et e e 7
3.4 Create a New Script File8
3.5 Script Wizard BUutton FUNCLIONSiuiiiie e eeeeaas 9
3.6 Script Wizard OUtPUL FUNCHIONSt eeaens 10
3.7 Script Wizard Custom ACtION HOOKcuiiieiiiii e 10

3.8 Compile the Script ...
3.9 Starting the Script
B 0 0 T I == 1 o o PP
3.11 Reviewing the Script Wizard COOeo.uiiiiiiiiie e 12
4 Configuring Device Properties
4.1 Device Properties Tab
4.2 HOSt BLADE SETHNQ ..ttt et e e e aenes
4.3 Surface Configuration
4.4 Audio Processor
4.5 Soft LIO Configuration
5 LIO Example UsiNG SOt LIO S ... i e ens
5.1 Configure the Source Signal in Navigator
5.2 Assign GPIP Soft LIO’s
5.3 Create the Mic Control Script Using Script Wizard
5.4 Reviewing the Script Wizard COAecciuiiniiiiiiiee et
6 What is the SCrPt EQitOr? ..o e et e e e e anenes 20
6.1 Script Editor Features
6.2 Third Party EITOrSo et eeaes
7 Creating CUSTOM SCIIPES . uti ittt e et e e e a e enenaes
7.1 Getting the Example File
7.2 Example Script Design
7.3 Auto-generated Script Components
7.4 Custom Start up Subroutine
7.5 Example Script Structure

7.6 Example Script - Variables and Constantscocoiiiiiiiiiiiiiieeeeea 24
7.7 Example SCript - SUDIOULINESt aeas 25
7.8 EXample SCriPt - ACHIONS . .iuieiii e 26

GPC-IP / Aug 2009 page Contents — 2

GPC-IP CONTENTS

7.9 CuStom SCripting SUQQESTIONS ouiuiiiiiiiiiiee e e e e aeaens 28
7.10 Scripting ROUtEr CONTIOlue e 28
7.11 Scripting SUIrface CONIOL ... eeaes 28
7.12 BasiC SUIface FUNCLIONS ...t ee e 28
7.13 Advanced Surface FUNCHONS ... 29
7.14 Example surf_talk Commandsooiiiiiiiiiii s 29
8 GPIP-16P Scripting Language OVEIVIEWc.ccuiuiiiiiiiiiiiii et 30
8.1 CASE SENSITIVILY ..ueuiiiiiiii e e 30
S F0Z A ©o T o 01 o o T=Y o | K= PP 30
ST 3 A o 0] o E= PP PR 30
8.4 Global Variables ... e 30
8.5 Local & Static Local Variables ... 31
S S 0] 13 =1 o | £ T PSPPI 31
LS TR N = V£ T 31
9 GPIP-16P Scripting Language StruCtUrecoiiiiiiiiiiiiiiiecee e 32
0.1 SCHIPE STIUCTUIE . ..eeeee ettt ettt et e e et e e e e e a e eenaens 32
9.2 CoNstant DECIAratioNSuiuii e 32
9.3 Global Variable DecClaratiOnsc. i aeas 32
9.4 Global Array DecClaratioOnNs ..o e 33
9.5 Local & Static Local Variable Declarationsccooviiiiiiiiiiiiiiiiiiieeee, 33
9.6 ACLION BOAIES .. e e 33
9.7 ACHION PAr@METEIS .. it ettt e eaes 34
9.8 SUDIrOULING BOGIES ...ttt e e e e eenns 34
9.9 SUDIOULINE ParamMeterSc.ou et aes 34
OIS Yod 1o 1 Al B o 18 T T |1 [P 36
10.1 FINAING COMPIIET EXTOIS ...t e e e eeas 36
10.2 TRIrd Party EITOrS ... oottt e eenes 37
10.3 Using “Print” and Telnet to DebUQoiuiiiiiiiii e 37
J N o] o 1=T o [[b A PP PPN 39
Appendix Al - Example Custom Script File ..o 39

GPC-IP / Aug 2009 page Contents —3

GPC-IP HARDWARE

GPC-IP Hardware

General Information ... 1-2
GP-3 Headphone Panel e ceereiecrcvre s s e n e e 1-3
Replacement Parts

GIP-3 PINOULS ..ttt ettt eaas
GIP-3 SCREMATIC ...ttt et
GIP-3 Load SREET.... ettt
GP-3-SK Headphone Panel ... 1-7a
RePIacemMENt Partso et 1-7a
GIP-3-SK PINOULS ...ttt ettt e e e e 1-7b
GP-4S 4 Switch Mic Control Panel........ccccmimimiiiimicircccmcerena e 1-7
RePIacemMENt Parts et 1-7
[S T T oo U £ PP 1-8
GIP-4S SChEeMATIC ... ettt 1-9
GP-4S Load SNEET ... 1-10
GP-4W 4 Switch Control Panel.........coiimiievrereemcecmem e 1-11
ReplacemeENnt Parts 1-11
GIP-4AW PINOULS ... e e e 1-12
GIP-4W SCREMALIC . ..ttt e 1-13
GP-4W LOAd ShEET ...t eaeas 1-14
GPIP-8 8 Switch Programmable Switch Panel..........cccccaunn.e.e. 1-15
Replacement Parts

GPIP-8 PINOULScuiiiiiiiiiiie e

GPIP-8 SchematiC ..o

GPIP-8 Load Sheet

GIPC-1 SCNEMATIC .. ettt ettt
GPC-1 Load Sheet

GPIP-16 16 Switch Programmable Switch Paneil....................... 1-23
RepIacemMeEnt Parts e
GIPIP-16 PiNOULS ...ttt et e e e e e e eaens
GPIP-16 SchematiC ..o

GPIP-16 Load Sheet
GPC-1 Schematic & Load Sheet see pages 1-19 - 1-22

GPC Chassis Full Size Template ... 1-27
GP-3 Headphone Panel Full Size Templatecceveimimieiininnnnns 1-27a
GPC-IP System Parts List ..o e e 1-28
GPC-IP Installation Kit Parts LiSt......cccomiimiiiiiiieeie e 1-28

GPC-IP / Aug 2020 page 1-1

GPC-IP HARDWARE

GPC-IP Hardware

General Information

The GPC system (W# 008710) is comprised of a desk turret (W# 008700)
having some combination of the available panels installed. The turret can hold
three single-wide panels, or one double-wide panel and one single-wide panel.
Several single-wide panels are offered: the GP-3 (W#008705) headphone panel, the
GP-4S (W#008706) 4 switch mic control
panel, the GP-4W (W#008707) 4 switch [F———————————————])
control panel, the GPIP-8 (W# 008703)
8 switch programmable switch panel,and
the GP-BK (W# 008720) blank panel.
The double-wide GPIP-16 (W#008704) & ’@
16 switch programmable switch panel is
also available. The panels are described
in details on the following pages.

4 Drill Center Marks
On the bottom part of the turret are for #8 Screws 3/16" bit

four predrilled holes (3/16"D) that are
used for mounting the turret to the coun-
tertop. Drill holes in the countertop by
using the supplied full size turret template
(W# 008712; see page 27). Then place é/ | | %
the turret on the counter and secure it

with the supplied #8 screws. | L _

GPC-3 Chassis Template

GPC-IP / Jan 2013 page 1-2

GPC-IP HARDWARE

GP-3 Headphone Panel (w# 008705)

The GP-3 panel is comprised of a switch, a Low Z level pot, and the 1/4” RTS and

3mm Stereo headphone jacks.

All user wiring to the GP-3 panel takes place at the 12-position plug terminal and the

RJ-45 connector mounted on the GP-3PCB.

M B B B B B B B

Rear View
REPLACEMENT PARTS
PART NAME W#

FACEPLATE 008725
GP-3 SWITCH BARRIER LEFT 008714
GP-3 SWITCH BARRIER RIGHT 008719
SWITCH 510109
CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
AND WHITE INSERT

POT DUAL LINEAR LOW Z 500121
21MM GRAY COLLET KNOB 520023
21MM BLACK CAP WITH WHITE LINE 530319
6 PIN PLUG 230031
6 PIN HEADER 250065
RTS JACK 260005
3.5MM STEREO JACK 260074
12-POSITION PLUG ON BARRIER STRIP 260045
12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

GPC-IP / Aug 2020

page 1-3

GPC-IP HARDWARE

GP-3 Pinouts

Plug Terminal

HEADPHONE LT
HEADPHONE SH

=

N

HEADPHONE RT w
N/C IS

N/C o1

N/C o

SWITCH N.O. -
N/C o

SWITCH COM ©
SWITCH LED + B
N/C =

SWITCH LED - 5

RJ-45 Connector

| | | HEADPHONE LT

| | | HEADPHONE RT
-—- | switcH N.O.
} } HEADPHONE SH
| | | SWITCH LED -
-—- & | switcHcom

| || NC

[8]I [SWITCHLED +

Note: Level pot is Low Z (100W).

page 1-4

GPC-IP / Sep 2009

PHOENIX CONNECTOR
cr2_

i I HDPN_LT
| (1 > T =
D HDPN_SH
I T
A HDPN_RT
I T
I |
\
!
I
! ®_: SW_NO
1 T~ -
I I
!
Sw._C
1 GO -
I | LED_A
1 Q0
| :
| | LED_C
1 G2
SWi1
SW_NO =12 Sw_c
LED_C APDAE LED_A
<
"ON" SW

HDPN_LT

RJ-45 CONNECTOR

HDPN_RT

SW_NO

HDPN_SH

LED_C

SwW_C

LED_A

HDPN_LT

HDPN_RT
100 Lﬁ?
1

10086 5 R2 24
CT1<4 1

2 R1 24 2

CT1
HDPN_SH

CONTRACT NO. G P 3
- Wheatstone Corporation - -
APPROVALS DATE
W\WVheat stone Corporation
DRAWN wWwp | 6-27-05 600 Industrial Drive
CHECKED SA_I'SIZE [FSCMNO. Ne[)v\\:v%?rn(’)’.\lc 2 REV
ISSUED - | B 00S0041 A
W# 700841 SCALE | GP-3A PCB | SHEET 10F1

?

1

GPC-IP 7/ Sep 2009

GP-3 Headphone Panel Schematic

pagel-5

GPC-IP HARDWARE

@ escccacdreen o
| |
[) (]
[]
% ® :%: | F X X
& = R2 o e eoqd
@ Yvwneatsione @ e @

Top

a.

Qo0 Qoo qoeood»on

Py - CT2

C E
, . B :
[]
as ’

@ @ @

GP-3 Headphone Panel Load Sheet

GPC-IP / Sep 2009 page 1-6

GPC-IP HARDWARE

GP-3-SK Headphone Panel (w# 008220)

The GP-3-SK panel is comprised of a switch and a level pot.

All user wiring to the GP-3-SK panel takes place at the 12-position plug terminal and

the RJ-45 connector mounted on the GP-3PCB.

Rear View

REPLACEMENT PARTS

PART NAME Wi
FACEPLATE 008793
GP-3 SWITCH BARRIER LEFT 008714
GP-3 SWITCH BARRIER RIGHT 008719
SWITCH 510109
CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
AND WHITE INSERT

10K DUAL AUDIO POT 500029
21MM GRAY COLLET KNOB 520023
21MM BLACK CAP WITH WHITE LINE 530319
6 PIN PLUG 230031
6 PIN HEADER 250065
12-POSITION PLUG ON BARRIER STRIP 260045
12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

GPC-IP / Aug 2020

page 1-7a

GPC-IP HARDWARE

GP-3-SK Pinouts

12-pin Plug Terminal

LINE IN LT
LINE IN SH
LINE IN RT
LINE OUT LT
LINE OUT SH
LINE OUT RT
SWITCH N.O.
N/C
SWITCH COM
SWITCH LED +
N/C
SWITCH LED -
RJ-45 Connector
| '] | HEADPHONE LT
} | | HEADPHONE RT
-— - | swiTcHN.O.
} } HEADPHONE SH
| | | SWITCH LED -
-—- [| switcHcom
| | N/C
(8]| | SWITCHLED +

GPC-IP / Aug 2020 page 1-7b

GPC-IP HARDWARE

GP-4S 4 Switch Mic Control Panel (w# 008706)
The GP-4S panel has “ON,” “OFF,” “COUGH,” and “TB” (talkback) switches for
use as a microphone input remote control.

All user wiring to the GP-4S panel takes place at the 12-position plug terminal or
the RJ-45 connector mounted on the GP-4PCB.

Rear View
REPLACEMENT PARTS
PART NAME W#
FACEPLATE 008726
GP-4 SWITCH BARRIER 008715
SWITCH 510109
RED TRANSP CAP FOR SWITCH 530097
ORANGE TRANSP CAP FOR SWITCH 530098

CLEAR FLAT TOP CAP WITH WHITE BASE | 530109
& WHITE INSERT

12-POSITION PLUG ON BARRIER STRIP 260045

12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027
SWITCH LED YELLOW 600031

GPC-IP / Jan 2013 page 1 - 7

GPC-IP HARDWARE

GP-4S Pinouts

Wire these connections to the console mic input channel or WheatNet-IP
logic port.

Plug Terminal

COUGH
TALK BACK
OFF TALLY

ON TALLY
REMOTE OFF
REMOTE ON
GROUND
GROUND
+5V DIGITAL
+5V DIGITAL
N/C

N/C

w
I
(6]
(o]

L O 6 8 [

cl

*RJ-45 Connector

| | GROUND
| | COUGH
N | TALK BACK
} } OFF TALLY
| . ONTALLY
-—- [BJ| REMOTEOFF
| | REMOTE ON
| | +5V DIGITAL

GPC-IP / Oct 2012 page 1-8

2

1

PHOENIX CONNECTOR
CT1

MC_COUGH

MC_TBZCR

MC_TALLYOFF

MC_TALLYON

MC+5V

<
(@]
+
gl
<

CICICICICICICICICle

[any
[

0000000000

(2!
Swi1
OM[,ON 1 o-l; 2 GNDO
X
MC_TALLYON R1220 4 3 MC+5V
<O VW—_|<} <>
"ON" SW
SwW2
OM[,OFF 1 o-l; 2 GNDO
DS
MC_TALLYOFF R2220 4 3 MC+5V
<O VW—_|<} <>

"OFF" SW

RJ-45 CONNECTOR

CT2
——1a
GND |
<> ’ I 1 | [
S MC_COUGH ' @ I
' l__ _
MC_TBZCR ! i
& —(3D |
MC_TALLYOFF |
& —C4D |
MC_TALLYON |
O —C |
MC_OFF |
- —CeD !
O MC_ON I @ r———
I |
— MC+5V (5 !
| = Ei -
sSw3
oS MC_COUGH 1 |] 2 GND oS
"COUGH" SW
sw4
oS MC_TBZ(R 1 | =] 2 GND oS
"TB" SW
CONTRACT NO.
- Wheatstone Corporation - G P-4S
APPROVALS DATE -
W\Vheatstone Corporation
DRAWN WWP | 10-13-05 600 Industrial Drive
CHECKED A New Bern, NC 28562
SIZE [FSCMNO. _ |DWG. NO. REV
ISSUED s» | B 80S0040 A
Wi 700840 SCALE | opaapcB [SHEET 10F1

1

GPC-IP 7/ Sep 2009

4 Switches Mic Control Panel Schematic

page1l-9

GPC-IP HARDWARE

.“u .. ".W“ °

aeo ° wé ctt ¢ o]
(] (] |
¢ cre ° ° g
Bottom

GP-4S 4 Switch Mic Control Panel Load Sheet

GPC-IP / Sep 2009 page 1-10

GPC-IP HARDWARE

GP-4W 4 Switch Control Panel (w# 008707)

The GP-4W panel has four general purpose illuminated switches.
All user wiring to the GP-4W panel takes place at the 12-position plug terminal or

the RJ-45 connector mounted on the GP-4PCB.

Rear View

REPLACEMENT PARTS

PART NAME Wi
FACEPLATE 008726
GP-4 SWITCH BARRIER 008715
SWITCH 510109
CLEAR FLAT TOP CAP WITH WHITE BASE |530109
& WHITE INSERT

12-POSITION PLUG ON BARRIER STRIP | 260045
12-POSITION BOXED HEADER 260046
RJ-45 CONNECTOR 260048
SWITCH LED RED 600027

GPC-IP / Jan 2013

page 1-11

GPC-IP HARDWARE

GPC-IP / Sep 2009

GP-4W Pinouts

Plug Terminal

SWITCH 3
SWITCH 4
TALLY 2
TALLY 1
SWITCH 2
SWITCH 1
GROUND
GROUND
+5V DIGITAL
+5V DIGITAL
TALLY 3
TALLY 4

c

9 ¢ v €

\l
(oe]
©
[T
(@]
[EEN
[N
[N
N

RJ-45 Connector

GROUND
SWITCH 3
SWITCH 4
TALLY 2
TALLY 1
SWITCH 2
SWITCH 1
+5V DIGITAL

No connections available for Tally3
and Tally4 on this connector.

page 1-12

2 3 1

PHOENIX CONNECTOR
CT1 RJ-45 CONNECTOR
I_Q_ —1 W3
e SWE I
€Dz, GND ! — !
> o s o |
| | TALLYT } - ==
C4) SWL !
:®: - ; : D) | NO CONNECTIONS
I | — ALY @ I AVAILABLE FOR
B | CG | SWI TALLYT : = | TALLY3 AND TALLY4 B
I I GND —D ! ON THIS CONNECTOR.
17)+ SWZ \ !
D) .
I | GND — I)
¢ (D T
MC+5V |
€D MC+5v L !
| | MC+5V X |
et wesv — T o
' D) TALLY3
g TALLYG
| |
- SW1 SwW3 <—
SWI 1| e |2 GND SW3 1| mbm |2 GND
X —o— X
TALLYL Ri220 4| 0| MC+5V TALLY 3 R3220 4| 19 |3 MC+5V
< <
SW2 Swa
SW2 1| == |2 GND SWL 1| ==]2 GND
AN AN
A TALLYZ R2220 4| 119 |3 MC+5V TALLYL R4220 4| 19 |3 MC+5V A
< <
CONTRACT NO. GP 4W
- Wheatstone Corporation - -
APPROVALS | DATE W\/Vhealrtone Corporation
DRAWN Wwp | 10-13-05 600 Industrial Drive
CHECKED SA__I'SIZE [FSCMNO Ne‘tl)vv?grrrlic’;l —— REV
ISSUED - | B | ’ o 80S0040 A
W# 700840 SCALE | cP-aarce [SHEET — 10F1

2 T 1

4 Switch Control Panel Schematic
GPC-IP / Sep 2009 page 1-13

GPC-IP HARDWARE

.“u .. ".W“ °

aeo ° wé ctt ¢ o]
(] (] |
¢ cre ° ° g
Bottom

GP-4W 4 Switch Control Panel Load Sheet

GPC-IP / Sep 2009 page 1-14

GPC-IP HARDWARE

GPIP-8 8 Switch Programmable Switch Panel (w# 008703)

The GPIP-8 panel has eight switches that can be programmed for a variety of functions
by using the WheatNet IP GP-16P software (described in Appendix).

The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted
on the GPC-1PCB.

~
- HINEEEEENE -

Front View

Rear View

REPLACEMENT PARTS

PART NAME Wi
FACEPLATE 008728
GP-8 PCB "L" BRACKET 008745
COAXIAL POWER JACK 260054
RJ-45 CONNECTOR UPRIGHT 260048
SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004
POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

GPC-IP / Jan 2013 page 1-15

GPC-IP HARDWARE

GPIP-8P Pinouts

RJ-45 Ethernet Connector

7] | ™D+
}\ TXD -
~——— [3]! | rRxD+
- =
| 51
- [6] | RXD-
\ L7 1
el

|

>

5}
=t 11
S

=

=

[

=

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

GPC-IP / Jan 2013

page 1-16

swi
SW_X_0 = DL 4148 SW_Y_1
.
P
LED_X_0 <
2
1
sw2
— D2 4148 w2
= | Y.
4
~
2
2
sw3
— D3 4148 w3
= | Y
4
~
2
3
Sw4
— D4 4148 swy 4
= | AR
4
~y
2
4
SW5
SW_X 1 e s 418 Sw_y 1
X = | Y
%
LED_X_1 N RE. 39 LED_Y_0
LT
5
SW6
— D6 4148 Swy 2
.
4
> RT3 LED_Y_1
6
sw7
— o7 au8 Swys
c
=
4 RE 30 LED_Y 2
7
sws
— D8 4148 Swya
c
=
4 R 70 LED_Y 3
8

LED X 0

DSPL_CLK

|

433V

1999

|
T
S— e @ LEDL C
DSPL_RS : :Dl CIZ N DSPL_DIN
I
™ 4
SW_X_5 L@ @ SW_X
I
SW X 3 \ @5 @6 : SW_X 2
! |
SW_X_1 @ G SW_X_0
! |
SW_yY 7 & @ SW_Y 6
SW_Y 5 | \ Sw Y 4
&) (€5
Sw_y_3] SW_y 2
== (= G = k—
SW_Y 1 | L SW_Y 0
REONED; ‘
LED Y 7 L) LED_Y_6
| 27 28 ;
LED Y 5 . LED_Y 4
‘{ 29) (30) ‘
LED_Y 3 LED_Y 2
; 31 32 ;
LED_Y 1 & G- LED_Y 0
| a
R3 R2 R12 R10 =
GND R1 R11 R13 R4 R5
100K { 100K 100K §1.00K
100K $100K SLOK $100K $100K B
GND D GED GED = = - = -
GiD GWD GND GWD GND
[CONTRACT NO.

o APPROVALS | DATE Q\Wheatstone Corporation
[DRAWN wwp | 12505 600 Industrial Drive
[CHECKED SA SIZE | FSCM NO. Ne‘l;"\l\?é”"\;c’)\lc 2002 REV
e — - -NO- 8050038 [A
| w# 700838 SCALE | cpsarca [SHEET 10F1

- Wheatstone Corporation -

GP-8

3

2

1

GPC-IP / Sep 2009

GPIP-8 Programmable Switch Panel Schematic

page1-17

GPC-IP HARDWARE

'?'

+
4a4a0
SW1

e g ‘ vy g o9 e E eee
A % A 'I' A % A % A % A
+ + + + + +
a4a0 a4a0 CAO 40 d00 - d00 - 400

sw2 1B sw3 I swq

@Wh@otftom@

D1 R6
@===@
>
D2 W BR7

GPIP-8 8 Programmable Switch Panel Load Sheet

GPC-IP / Sep 2009 page 1-18

out +33V
7777777 I
| .7—/]
ETH_TX- 14
e - | ‘
| T
C87 0.1uF | LED_X_0 | 5 @_{
GNDH| 15 RIOAT | ETHERNET RJ-45 CONNECTOR &P]
. — ‘ D @
[N |
ETH_TX+ I RJ_P8 DSPL_CE | L LED_X_1
— c1+ v+ X+ = ! | o @@
| | ! RJ_P7 DSPL_RS | DSPL_DIN
D 0.1uF 3 6 €92 0.01uF | | 1 = 0 €D) Q2+ D
o v c63 c6 {F—aeno ! ! | (@)__,L RJ_P6 RXD SWX5 L(13) (@] 1 SW X4
4 | = -
! |
4 | |
01uF T 0.1uF | | RJ_P5 SW_X_3 SW_X_2
o2 ca+ I . I . Rx. ETH_RX- B ! ‘ ! Ot e (B @® ;
0.1uF = = | RJ_P4 SW_X_1 ! SW_X_0
Towr slc, oD ofD RS7 47 | | & G @
€86 0.1uF 85 00F | I ! RJ_P3 SW_y 7 ! | SW_Y 6
—— XD EE] S 7} To — enpi—]| onpi—| ! | = RXD+ —= (1) (@) —
20| T20uT L N - RJ_P2 TXD- SW_Y 5 l @D @ i SW_Y_ 4
RXD 12 13 R1| ETH_RX+ | ! | ! SW Y 2
CORe oyt R REL R ! | RLPL — 1yp. sw_y 3 & @ v
2 r20uT R2N|E - L= wv1 : | Yo
Y L Y
—(25) (26)
LTC1386 LED Y 7 | ! LED Y 6
+3.3V +3.3V — ‘{27) (28 H+ —=
I
LED Y 5 | LED_Y 4
—] =—= (29) (30)+ =—= —
Rat +3.3V DCin LED_Y 3 ‘ ! LED_Y 2
10.0K . == +—(31) (32)+ =
CE0 X0 CED X 1 |
C}**iﬁ Q3 === LED_Y_1 @ @‘ LED_Y 0
FDN340P = = T
LED_X_0 - L
GND
R16 +3.3V vee
1.00K
GND = <| © o = o| 2| o| | | of %| o
S8 d| 3l 3| R 8|8 838
$ES 388888888888
OETH—MDC—ZBMDC 11 55555555555
ETH_MDIO 27 QaaoQ 80 ETH_TX+
+33V +33v +33V +33V +33V +33V +33V vee +33V O—= 7 lwbio l=a) P S LLUNES D
> > EBTHTX & gy C
ETH_TXDI[O] 44
C R39 R40 R41 R47 R46 R45 R44 R38 R43 R42 T1.0 O# TXDO
OO ETH_TXD[1] 45
332 332 332 220 220 220 220 220 619 220 OETHTXD[Z]—AG TXD1
CO——=—= = {TXD2
ETH_TXD[3] 47
o 3 =1 2 o = © 0 | R1I o= 1TXD3
a2y VA EAVA VA g 2y EAVA g 4 O CSEMIXERR w0 | S e, Rl ETHRG o
% 7 7 % 7| % % 7| % - = ETH_TX_EN 2 |y en R |22 ETH_RX- = RX-
1 1 | = ETH_TX_CLK 2 | ok
E £ E o o ETH_RXD[0] i it
= & -~ | GND Q# RXD1/PHYAD1
w i ; . ~ m 3 O ETH_RXD[2] % % NRZ+ |2
E £ £ E E e E & Semmog |22 : y
= = = = = w C}W RXD3/PHYAD3 TX_NRZ-[—
C}m—” RX_ER/PHYAD4/RXD4 .
— Qm—“ RX_DV/MI_DRV SIGNAL+[—= —
O—"22 2k 1 IRx EN SIGNAL- &
T2 ETH_RX_CLK 3% | oy oLk
~22 . {CO—————————"RX(
1 RS ETH CoL RX_NRZ+ —;
48
! GND = COL/PHYADO RX_NRZ- |—
+3.3V +3.3V 43,3V +3.3V +3.3V ! - | & OETH*CRS—AQ CRS/PHYAD2
| FPGA TCK —
ED, < ETA-MICIRD
c76 cr2 | ! FPGA_TDO o O % Iirre
0.1uF o 0.1uF o | | EPGA TDI " o
\ — 2 {|repeater spD100 |-
D GNI GN GND GND) | FPGA_TMS ——{10BT_SER
I ®7 T O O %0 [LP SBK5° [PSTRT spp10|-2£
FPGA OB S lipek 60 FTATXTEDT
e TXC
32_1BPALIGN S e —D
B CT4 BPSCR o |oreese 70 ETH_RX_LEDZ B
. —RX_
133V 433V 433V 133V X - - vee O—Zi BPSCR [EDz [STt
O = ISODEF [
I | | GND 64 —=|_71 ETH_LNK_LED3
c2 c90 | | GND S O—=—————————{PwWRDN LED3|———— — >
. (€D] O I
Io_m: I I . Io 1uF I ' GND 7 | ano CS8952 Epi |2 LED4_FOX-LED
= < < O+ — <>
D GN GN GND GRD I ! POV 38 _fAN1
or— : S TCM] (e (Eps |2
e
2= 8 lixstewa
CT1
= 86 RES
+12v +12V +12V +12V +12V +12v +12V +12V +12V +12V +12V +12v ! +3.3V C}ET"LRESET—B RESET RES <>
|
! GND
| c28 c7 cs1 c89 [SE cn cs50 cs5 c13 cr4 c39 cs3 | 2 Jcikes |
0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF 0.1uF | PROM_TCK
IO S O O S O O R L O | s DS I B P
= = = = H = = H = = H = % 5
GND GND GND GRND GND GND GND GND GND GRND GND GND w33V : CO———=——=——XTAL TESTL e
MIIPWR = 3.3V L8 ! PROM_TDI e
ETH_COL R76 10.0K | <> ===
ETH RX_EN R78 10.0€ ! ‘ PROM_TMS dae spmovonnoonnononne $888988
—— ~] nuon DODDDDODDNDDDDODDNDOOONON nunnnnnon
ETH_MI_IRQ R75 4.99K EPTR(SMJ > > > >>>>5>5>5>5>>5>>>5>>>>>> OXoYooooo
+2,5V +2.5V +2.5V +2.5V +2.5V +2,5V +2.5V ETH_MDIO R74 1.30K ol gl g Aolelal el =l ol el <l gl gl 2 ol ol 5] gl 2 2 ol ol 3| | el o]
TPSTRT R33 4.99K
car cs2 c73 c12 ca9 caa c6 TCM R3l 10
IO.luF Io 1uF Io F Io F I F IO.luF IO.luF G’y\“D
= = = = = & &
A GND GND GND GND GND ND ND BPSCR w52 499K CONTRACT NO A
- w1 GPC-1
ETH_TX_ERR RT7 4.99K 1% DIPSW 0] —, - SA UR US - Sergey Averin -
RES R67 4.99K 2 DIPSW_[1] +33V Y1
. TXSLEWO e 3 DIPSW_[2] APPROVALS DATE Wh t t C t
vce vce vce vce vce vce vce vce TXSLEW1 R30 4.99K 4 DIPSW_[3] CLK25 XTA <> DRAWN eaLsione orporation
LPBK R37 100K L P SA |5-17-07 600 Industrial Drive
cs8 ce8 c46 ca1 ce9 ce5 cs9 ce6 L GND CHECKED New Bern, NC 28562
Io.m: Io.m: Io 1wF Io 1wF Io 1wF Io.m: Io.m: Io.m: GND SA
= = = = = = = = ISSUED SIZE|FSCM NO. [DWG. NO. REV
GND GND GND GND GND GND GND GND SA D 8080042 C
W# 700843 SCALE | GPC-1C PCB [SHEET 10F3

GPC-1 Controller Schematic - Sheet 1 of 3

GPC-IP / Apr 2012 page 1-19

g A RN EEEE 3 3 QEEE T s ek Es 2 BB ENEE S|
5 El RESIE 2133 3 8 Ea bl - e] i] sl s o e B = 5155|355 T
0 | | P =Y D T) O O [d| |ad 7z i & wlw|wo|ulojul w
o|o|2|2 |1 o (W 7 2
| 2 alz|5lz| 2|2]3 > S <| |< 215 s e
433V LClL 2 | o|5|°lo| =z|z|o 5 z wioqe Bl |@ e
3 CPU_PLLHV © o° o < <
IN OUT| R27 1.00K +3.3V
GND rL}cu ca0 -
2] EMI_FILTER
D IZZUF Io.m: HP_EN R24, 1.00K GND D
Gio o oo ol slslolalsl glalzlsl gl < of ol 8l 5l ol vl 22l gl 2 ol 2 ol ol 2l ol sl ol slzlolalsl el 2l gl sl 2lgl e ool ol sl ol vl gl =
HEEEEEEEEEEREEE 1 S I R e e e R HEEEEEEEEEEEEEEERE EEEEEEEEEEEERE
SY>>>F wuWUF0 So© k] 5 0000000000000y o PR
DZThonln s 22FE o 2x IS 02120 be 2ego 2 2n D)
Dx4n:n:|ﬂf CEFR 333 rTErTEIrETEaxax Lezwzo - zaoza T zwxx S¥goTzoza“Waoz 207 FPGA_PGRM
o4z = [rririie] 55555500393 FLCFRE RR8 HLoo o0y ¥YEIRY ESLc PROGRAM Bp————————=—— (>
sSo0no < \\\\\\mr\ow% 156 R13 1.00K +3.3V +2.5V R56 4.99K 56 £€22%33 3333 Z200 o023 3333 2322 —"1"104 R52 47 FPGA CCLK
4 8383 gdg9a00zfo HD4/GP[0] F— W ————————<> M2 2552506 0000 O9s8s SS90 0000 oo CCLKg—— ——————>
3 © o80b0boTTETS 155 02,888 22282 Q59 2 Qe iQoin 103 FPGA_DONE
© ITIzIzIzx @7 R HD2/AFSX1 M1 =Z94 == === =2l za'Z === 2534 DONE|F2——— 2P =
154 R9 1.00K GND R61 100 o o m oo N N ™ - o o
I I HD3AMUTELf——W——— > Mo 44 <4993 a9 4 4 EPGA TMS
FASIACLKXL %2 GND Re4 100K gs¢ gog 0g¢ g g2 ™S e FPGA_TDI 5=
HDU/AXRL[7] |22 (O-CGND REROC 206 fswap_EN = = I Z“WO
EXT_INT4 ADST/AXR1[6] (= Too |22 ok
Qm—l GP[4](EXT_INT4)/AMUTEINL ADS2/AXR1[5) 22 TokgEE — TOA R S
NI aa—— 2| GP[6I(EXT_INTS) HDO/AXR1[4] | 24- < >—§E{“[Ziﬁ§g 2_11/0,L01P_7/VRN_7 -

— Qm—s GP[S](EXT_INTS)/AMUTEINO HCNTLO/AXR1[3] 128 COOSILMREEDS 8 1y6) 01 7ivRP_7 1/0,LOIN_2/VRP_2 NWO —
O GPITIEXT_INTY) ACS/AXR1[2] |42 COO-ERXLEDZ 4 lyo116p_7/VREFT /0 LO1P_2IVRN 2 | 15— X5 =
+3.3V 499K R34 g 144 ETH_TX_LEDT 5 154 BET
{CO———————A———{CLKS1/SCL1 HCNTLY/AXR1[1] |—— C}W 1/O,L16N_7 1/O,VREF2 —mo

12| iNp1/AHCLKXO s HRAVIAXR1{0] [2 Om—7 VO,L19P_7 VOL19N_2 152_E|)13C>
21 1ouTI/AXRO[4] HRDY/ACLKR1 [F22. C}ETH—TXM—Q 1/0,L19N_7/VREF7 1/0,L19P_2 H@
2 | cLkxoiacLkxo HHWIL/AFSR1 [ETHiTXD[Z] 10 liio,L20p_7 UO.L20N 2 ED[14]
27 1iNPo/AXRO[3] HoLp |2 QW—” 1/0,L20N_7 1/0,L20P_2 %@
18 {rouTo/AxRo[2] FOLDA | 3L ETHiTXD[O] 2 lyoL21p 7 1o,L21N_2 |24 s
22 1 CLKRO/ACLKRO BUSREQ [FPGA DONE OM\]I—B 1/0,L2IN_7 " 1/0,L21P_2 H@
22 px0/AXRO[1] HINTI/GP[1] BSRM—WK——EDOO QETH—TX—CLK—“ 1/0,L22P_7 1/0,L22N_2 H@
2L ESXOIAFSX0 EDO H@ QETH—TX—ERR—w 1/0,L22N_7 1/0,L22P_2 H@
22| FSRO/AFSRO ED1 H@ W 1/0,L23P_7 1/0,L23N_2/VREF2 H@
sy P 21 DRO/AXRO[0] ED2 H@ QETH—RX—CLK—W 1/0,L23N_7 1/0,L23P_2 H@
OBV APRE 28 6L KSO/AHCLKRO ED3 H@ QETH—RX—DV—ZO 1/0,L24P_7 1/0,L24N_2 H@
C 2 Esxa ED5 H@ OETI—i_R'XI_)O—Zl 1/0,L24N_7 1/0,L24p_2 {38 7 ><[3] C
32] bx1/AXRO[S] ED4 H@ QW—ZZ 1/0,L39P_7 1/0,L39N_2 m_ED—‘lO
38 CLKX1/AMUTEO ED8 H@ C}ETH—RXD[Z]—Z“ 1/0,L39N_7 1/0,L39P_2 [135 ED[S]
—zs CLKR1/AXRO[6] ED7 —<1§2 ED[G] > < >—ETH—RXD[3] ij 1/0,L40P_7 yoLaoN 2|8 =B ¢ ED[; >
| prusDAL ED6 H@ COEMROBL 2 o) son_7ivREF? T o] R c—) D
= FSRU/AXRO[7] TMS320C6713 EDIOf—————————=
% SCLO EDY %@ Qm—ig 1/0,L40P_6/VREF6 1/0,L40N_3/VREF3 |2 Eg{ﬂ
22 1spao ED12 “—ED[H]O 2| VOLaON 6 1/0,L40P_3 m_ED[O]C)
ED11 m—EDMO Om—l 1/0,L39P_6 1/0,L39N_3 mWO
Ep1a | 213 ED[15] e O B 3 _11/0,L39N_6 1/0,L30P_3|*2 SW X 1
0 ED15 H@ Om—“ 1/0,L24P_6 XC35200 1/0,L24N_3 HS_SMO
‘8 ‘2 5 oYy o E—) D =R % lio124N_6/VREFS vo,L24p_3 12— L2
% 5 =2 D - 2 lyoL23p_6 wozaN 3 HE L
2 2 6@ [y - E—) D O % ljolasne 110,L23P_3VREF3|HE— SW.YS M
- = 5_I08E 5ET |08 BEL X S EEDL 3 {022p 6 JoL22N 3|20 SW_Y_5 <—
3 8213318 LEDZ a | i FT WY 4=
> O TX00 8 g moanwd~o O CO—=—————I0L22N_6 IoL22P 3 == (>
QN svworcooddgledaSadaagddad o) LED3 42 117 Sw_y_ 3
cUMlccI<c<<<<O<OPEIR << (@Y COoO————————=I0L21P 6 1/0,L21IN_3 ==
<lOuUwuUuUuUUwuluoY<OolWw W wwwwuwwlolo 43 116 SW Y 2
Tl e 1/0,L21IN_6 IIO‘L21P73WO
8l u| 2| o] | 2] | o] | o] o] | [| 2]] o]] o] 5] o 5] 5] o] o] & E] B[B 4 {yo,200 6 /0,L20N_3 Ll
EXT INT7 25 11/0,L20N_6 5 10,L20P_3 |2
O 9% lolior s o - - 1/0,L19N_3 m—l_EMO
g 330pF lca EXT_INT6 a1 |IOVRER 8‘ g § : £58 83 30 833 g ga8gs E s YOLLTN S 0p LED_Y 4
0| CO-EXTINTG s og o9 008 Q802 coda [ECC— R D
MBEHE FPGA CCLK 220 R6 Tl EXTINTA {vo.Lotp_ervRN_6 5555 w355 55°%, S355.5555 <+; §5; O,LL7P_3VREF3 -2 oy s
o o] L L L L O . . sa0pF 5 O |lotomevRes ¥z8z pgez 22380 §8azlbezeg Bzl g3l JOLOIN IVRP 3 ep v =
o o et o s oo ot 5 T R o B 59 S) 5 5 ST PROM_CCLK 220 R7 T, 8899 §58§ 88J39g 998383888y §8& §3¢g O, LOIP_3VRN_3|-—————————===C
eelsEiER s EREE R BB EE R 5 R 55 EE i 000000505000993 2939300050535 033038
B EEEECEECEECEEE CEE B
sl ol ol ol ol 5l 0l sl el ol o <l o o] ol of ol ol @l @ =l of of ol <] ol of x| 8] 5] &
HEEEEBEEEEEEEEEEEEEEEEEEEEEEEEBEEE
+3.3V
4
3] ? €]
EABA[22] EABA[23] 0 '% ol = £
< I o
oo as L gl = z| & (= =S =P E iR o XPCRM —
us CPU_TMS | El @ ! CPU_TRST 3l &8 » n NHE] B[St e g‘ g‘ g‘ g‘ NN slel FPGA_PGRM
EA[2) ED[0] U4 i T g o5 slzIkl 2] S ~ R49 220 CPU RPOM =
e [pqopt—— 2 cPu_TDI ‘ | oo P 2 @ ols| g ¢ 233|5l2(2 13|05 |2|2|2|2|al o O-"R_ CPURPGM =
J— = [HEEE =
&S EQS} z“ AL po1 4 EEE} oS O +33V LOKRSS 14|\ opavp A2l 13 Eigigg O - ED) e 100K 100K S| o x|~ x| O o|&|k|a|B|o|o|c G|a|a|a|a|a PROM COLK
5 5 1 | Sl
A2 b= A0 > 5 e T 4
EA[S] 2 Q2 ED[3] ED[15] 45 o EA[21] o T Eh 200 = = 9 FPGA_CCLK
- EAI6) A3 bQ3 ED[4 2 - ED[14 DQ15A-1 AL9 EA[20) 2 C}w GND GND 3|0 o7 CPU_CCLK 2
EAH §§ Ad pos 2 50%5} 50%13} ﬁ DQ14 - A18 i? EAEQ} CPU_TCK ! | G N
D P——E N E—— Ao B—w———
COo———A5 Dsf————= <> O——=——————DpQ13 AlT|f——m T — > o 10
—] = EA[8] a1 o Dgs 11 ED[6] = ED[12] 39 Dglz L6 18 EA[18] S |) e PROM_DATA > —
EA[9] 2|, o |2 ED[7] 2 ED[11] o1 AtslE EA[17] slol FPGA_CDATA
| ! CPU_EMU1 - R4S 220
X Eag] | s pos|2 Folg = < Eo0) 71 oA [P EAlle] = CPU_EMUO G- | o CPU_CDATA =
< Ea) 2 a Folg = < Eoi9) 32 3 EAlLs] = = ‘ = -
Az A9 bQso Eoro] = < co8 DR A13 EAla = fTTTTTToo =
S EA[13] 2[ro 0Qi0 2 ED[11] < S ED[7] 0% A2p EA[13] < GNP R
- Hau boi :; 50%12} < S ED%G} ﬁi”‘” ALl 2 EAEZ} <
DRI CO—=———DQ6 A== > +33V R79
EA[14] 20f g p0 ng 50 ED[13] ED[5] 20 Dgs ol EA[11] 425V 425V 433V 425V 425V u12 00K
:: EA[15] 2 ea1 DO14 51 Eg[i;l] C: C: Eg[g] 38 DQ4 rs k8 EQE(;] :: e - U1l N TEL 2 1 n0 P ET_FLASH
P CM—CE DS BBl Blpos arfe EADL X 2fvces veeo 2 —a1 B~
BEOQ 15 ED[2] 33 19 EA[8] 1.00K$ 1.00K 1.00K 4 16
< oML < eon pQ2 A6 AT = PROM_TMS PROM_TDO Az B2ps
[| S—] YTV QW DQ1 A5 H@ RoVTO! 5 ms - +> a3 B3>
EMIF_CLK - = #1000 e EA[S] - PROM_TCK P e PROM_DATA A Bl CONTRACT NO
A O—————Tc aa—— - e R e t-as BSIE : GPC-1 A
+33vOQ———CKE nRE— L +— A6 B6 [—) =
& AWE/SOWE ulw ALl EA[3] S PROM_CCLK 3 heoik TEbL FPGA_PGRM & 9 a7 872 - SA UR US - Sergey Averin -

T e . T e D e ALY APPROVALS | DATE .
AWE/SOWE 16] o= AOE/SORAS 28| — FPGA_INIT) p— CE1 DISABLE 10|~ Wh t t C t
O SWE ORI g OE/RST 3 ealsione Lorroration

ARE/SOCAS |l s —o==|47__RI7 100K +3.3V FPGA_DONE 0l == = ===l DRAWN . .
{O——==Z—==——4CAs N BYTE p—— W A——— > CE CEO p—~ R65 SA [5-17-07 600 Industrial Drive
< AUE/SIRAS) e CPU_RESET 2les = Lo 741cx245
- XCF04 CHECKED SA New Bern, NC 28562
MT48LCAM16 M29W800 A = - o e
ISSUED IZE[FSCM NO. |DWG. NO. REV
SA
z 8050043 |
W# 700843 SCALE | GPC-1C PCB [SHEET 20F3

8 ! 7 ! 6 ! 5 T 4 ! 3 ! 2 ! 1
GPC-1 Controller Schematic - Sheet 2 of 3

GPC-IP / Apr 2012 page 1-20

R15 2.00K RL1 619K
FBS
€10 0.01uF
POV CBS TS; vee
6| Q2 |3
F1 FE_ CB L1
DCm.——- POV 2N our|LQUTS am e
POLYSW Lot ono ss|
1.0A 5| 4| 7|Lm2673
ca3z c3s c23 cu o1 c26 car . ca2 73 72 7 cs6
MBRDS35 1SMB5919 1SMB5919 1SMB5919
SSOUFT ZZUFT zzm:T Tmp 10K, c17 Tum: Tum: Tlsoom: 56V 56V 56V Inup
Re 0.220F 03 1
t T ‘ 75) GND
GND
u10 ™5
+3.3V OUT
veeOr _L 3 v our 2 _L ? O+33v +33V
et 1] L1117 ce I
4 7uFI 33V IA TuF c24
47uF
GND GND GND I
GND
P4
+2.5V OUT
veeOr ? QO+25v +2,5V
c7a_L _Lms
4 7UFI IA 7UF cs7
47uF
o o T
GND
433V vee
R4 RS
100K $10.0K
5 U2
onoi—f© G} PBRST WDS
NMI
iy FPGA_CDATA j s . « PGRM
U3 Icm 25V BATS4 D3 ¢——IN RST =
0 S DS1706
R51 220 =il VIN I‘”“F v BATS4 D2
REG SYNC [—'\N\:——II-GND VIN L -
= = 21 syne VIN S R2
499K
2.5V MoVV PR 2 ssiena X::
R29 PH O+ oD
2l veias PH
100K oH
PWRGD12 4 lowred PH
PH
2 {comp PH :
TPssas10-t [7
PH o TPL
PH ?
2 {ysense BooT |-
ca2 19
= PGND _Lcm
0.01UF 18
PGND IAWF
PGND [
R28 1 16 =
AGND PGND GND
2.00K 15
PGND
R20 10.0K
POWERPAD
GND GND GND 031' 'o_omp =23 100
)
CONTRACT NO. G PC 1
- SA UR US - Sergey Averin -
APPROVALS DATE @ .
ks Whealstone Corporation
SA [5-17-07 600 Industrial Drive
CHECKED SA New Bern, NC 28562
ISSUED SIZE|FSCM NO. [DWG. NO. REV
SA
b| | 8050044 |'¢
W# 700843 SCALE | GPC-1C PCB [SHEET 30F3

| 5 T 4 |

' 2

' 1

GPC-IP / Apr 2012

GPC-1 Controller Schematic - Sheet 3 of 3

page 1-21

GPC-IP HARDWARE

L1

R8
e
0 wms
T

lh-

v 2c42 GPC'O1C c17
N

GND*

P3@

DC IN

@

Clomm B ®

N
S
N~ ©
FE:cH 0 ca» cT3

|IIIIIIII’IIIIIIIII!IIIIIIIII'IIIIIIIJIIIIIIIII'II cs6 B

ReeRsasts oo

BR35 €53 C55

>
in
o
+

Er: T'I’“Rz;z8 R43 °R44 R45 R46
R39 Dsz DS3 DS4 Dss DSB DST Dsssﬁsm
°T5 iR Rt s s ale s aln wln alp alp i

DONE LNK RX TX +3.3 +5V LED3 LED2 LED1 LEDS "+3 3V

+12

c14 CT1 c15U3 H BRi2
nuiLl::em Il CT2 B awris _
c24 -U @l C20 8
i &-N W8 R2Y .
P WBR23 o
(\l.:. EBC30 Cl o
Saen eWMC32 M
. “asamrs LH3

nB Res @B TP1© m

L2

llllllllo
sy
!
chg

Top
Q@ ® O B Rrs5y .
Crg RS HED -9. [N :
S A M e
> s & . W2
Q) EWCT4
@) - s ag — R52 s
& se B © o cct B
oy R53 el u8 s
O gy £ = o
D e 1 R) _R55
Ogepg 5 5 D 8 fum 2
. 3322 3 g.:- 13}
@ "uss o U5 eomm So Ban
I s
.Sgg§§ reamm [N . i
Eheogeo ‘
- R - cee & UTTIT=ES
R E 5 cot Bk =) 5 ®
. .;ﬁ. === Rsllllllllll 2
@ w- O ® 53y cg3 RT9 Ut2

[Sergey Averin USA|
\Cepeeu ABEpUH CUJA\

J1-0d9

GPC-IP / Apr 2012

Bottom

GPC-1 Controller Load Sheet

page 1-22

GPC-IP HARDWARE

GPIP-16 16 Switch Programmable Switch Panel (w# 008704)

The GPIP-16 panel has sixteen switches that can be programmed for a variety of func-
tions by using the WheatNet [P GP-16P software (described in Appendix).

The unit has an RJ-45 connector for Ethernet connections and a DC power jack mounted
on the GPC-1PCB.

Front View

Rear View

REPLACEMENT PARTS

PART NAME W#
FACEPLATE 008729
GP-16 PCB "L" BRACKET 008746
COAXIAL POWER JACK 260054
RJ-45 CONNECTOR UPRIGHT 260048
SWITCH NKK W/BRIGHTED RED LED 510290
WHITE CAP FOR SWITCH 530004
POWER WALL ADAPTER 980035
PLUG KIT FOR POWER ADAPTER 980037

GPC-IP / Jan 2013 page 1-23

GPC-IP HARDWARE

GPIP-16 Pinouts

RJ-45 Ethernet Connector

7] | ™D+
}\ TXD -
-—- [3]! | rRxD+
=
| (51
;ff‘lzl\ RXD -
\\
el

|

>

5}
=t 11
S

=

=

[

=

Plug the supplied AC adapter into the AC
mains and into the DC IN power jack on
the GPC-1PCB to power-up the panel.

GPC-IP / Jan 2013

page 1-24

swi .
SW_X 0 - Dﬁ“ SW.Y 1
2
LED_X_0 d
11
1
sw2
prm DZM“"E SW_Y 2
2
<y
11
2
sws
e D&m SW_v 3
P
Nl
11
3
sw4
e D&m SW_Y. 4
&
<y
11
2
SW5 D5 4148
SW X 1 ry o SW_Y 1
2
LED X_1 d Rs 39 LED_Y 0
11
5
Swe
prm D&“"a SW_Y 2
2
5 Re39 LED Y 1
6
sw7
o D&“a SW_v. 3
P
5 R739 LED_Y 2
Z
sws
e D8 4148 SW_Y 4
&
5 Re39 LED Y 3
8

swe o e
SW X 2 - PR A SW.Y 1
11

P
LED_X_0 N
11
9
swi10
. Dl’l\4|143 SW7Y72
11
2
<y
11
10
Swi1
o D12 fus SW_v_3
2
<y
11
11
swiz
= D13 fue SW_Y. 4
2
N
11
12
Swi3 e
SW X 3 e R SW_Y 1
11
2
LED_X_1 2 R13 39 LED Y 4
11
13
swia
. Dl’4\4|143 SW7Y72
11
2
N R14 39 LED_Y 5
14
Swis
. Dl’5\4|143 SW7Y73
11
2
5 R15 39 LED_Y_6
15
SWi6
o bie gue SW_Y. 4
2
M R16 39 LED_Y_7
16

vce

POV +3,

3V

|
LED_X_0 I Ra
— & GO Lok
S (D G
OSPL_CE | LED_X_1
(9) (10t =L
|
DSPL_RS | ! DSPL_DIN
nED) 12) ‘
SW_X_5 : @ G- SW_X_4
|
SW_X_3 (® G SW_X_2
! |
SW_X_1 (D @ SW_X_0 C
SW_Y 7 ! | SW_Y_6
== +(19) 20 S
SW_Y_5 e)| SW_Y_4
T O Q 1
SW_Y_3 (53) SW_Y_2
) (@D
SW_Y_1 | l SW_Y 0
() (26) ‘
LED_Y_7 : D Y LED_Y_ 6
|
LED_Y 5 L&) @ LED_Y 4
LED VY 3 ! ! LED VY 2
(31) (32)+
! |
LED_Y_1 D G LED_Y_0
S a
R2 R11 R9 =
100K $1.00K $1.00K GND R1 RI0 (R12 ¢R3 K—
1.00K 100K ¢ 100K ¢ 1.00K
GND GND GND = < 4 4
GNI GND GND GND

0.1uF

5

Q
24
S

CONTRACT NO.

- Wheatstone Corporation -

GP-16 A

APPROVALS DATE .
AT WWheat stone Corporation
WWP | 8-4-05 600 Industrial Drive
CHECKED SA New Bern, NC 28562
ISSUED SIZE|FSCM NO. [DWG. NO. REV
SA
0| | 8050039 [
W# 700839 SCALE | GP-16 PCB [SHEET 10F1

5

4

2

' 1

GPC-IP / Sep 2009

GPIP-16 16 Programmable Switch Panel Schematic

page 1 - 25

GPC-IP HARDWARE

E‘ooop.iocoo.ooooop‘ GP-16
neeveodegeeodoeccogon m
R6 gy CT1 RIE W SH R CHR BBRIRg R11 @

(XX 0o (XX (XX ! °9 (XX (XX (X
A % A % VAT | VAN A ﬁ A % A % A
+ + + z + 2 + + + +

ge o geo geo T geo geo geo oo
Swi N sw2 1B SW3 ¥ SW4 I3 SW5 Q@ Swe I SWr R S8

W\ Wheatstone o
< [fe) (]
x @ o

eee (Bl eee vy e 2 (XL g X g o9 g e
A A A A % A A A A
+ + + + + + + +

| X X % | X X)) % | KX % | XX yoo % | KX % [X)) % | X X
SW9 = SW18 o SW11 " Swi12 SW13 S/N SW14 SW15 SW16

i i i ¢® esse———

GPC-IP / Sep 2009

GPIP-16 16 Programmable Switches Load Sheet

page 1-26

— 3.708 —

5.700

4 Drill Center Marks
for #8 Screws 3/16" bit

GPC Chassis Full Size Template

GPC-IP / Sep 2009 page 1-27

GP-3/Feb 2018

- 6-1/2" -

19/64" —» |- 5-29/32" >
v 1/16"

-4 19/64"

— . — D=3/32"
4 A /
D

O

13300 Y ~ R-1/16"TYP. (
45/64" Y !
___ /)

A/(i b 13/64"
R-1/8" TYP. —

W FRONT PANEL FACE RECESS DIMENSIONS
6-1/2"x1-13/32"x3/32"

COUNTER CUTOUT DIMENSIONS
5-29/32"x1-9/32"

GP-3 Headphone Panel Full Size Template

page 1-27a

GPC-IP HARDWARE

GPC-IP SYSTEM PARTS LIST

PART NAME W#
GPC DESK TURRET 008700
GP-Ul1 UNDER COUNTER MOUNT ASSY 008701
GP-3 HEADPHONE PANEL ASSY 008705
GP-4S SWITCH PANEL ASSY 008706
GP-4W SWITCH PANEL ASSY 008707
GPIP-8 SWITCH PANEL ASSY 008703
GPIP-16 SWITCH PANEL ASSY 008704
GP-BK BLANK PANEL 008720
GP DUAL RACK FACE 008744
GPC INSTALL KIT 008711
GP PANEL ROUTING TEMPLATE 008718

GPC-IP INSTALLATION KIT PARTS LIST

PART NAME W#
GPC TURRET MOUNTING TEMPLATE 008712
GPC-IP MANUAL 008727

440X3/16 PHILLIPS PANHEAD S/S SCREW | 820019
832X5/8 PHILLIPS PANHEAD S/S SCREW | 820127

GPC-IP / Sep 2009 page 1-28

APPENDIX

Appendix
WheatNet-IP GPIP-16P Configuration Tool

Setup and Programming Guide

page Appendix —1

Wheatstone Corporation
Technical Documentation

WheatNet-1P
GPIP-16P Configuration Tool

Setup and Programming Guide
* Configuring IP Addresses
* Programming Button Functions with the Script Wizard
* (Creating Custom Scripts with the Script Editor

W\ Vheat stone Coreoration
600 Industrial Drive
New Bern, NC 28562
252.638.7000
www.wheatstone.com

Revision 1.0 — September 2009
Paul Picard

Table of Contents

1 Introduction

1.1 GPIP-xx Hardware Compatibility..........ccceeiuiiiiiiiiiiieeiie ettt 3
LR o 1 TS] I o Tt PRSPt 3
1.3 POWET SUPPLY -ttt et ettt et e st e e bt e et e st e e esbe e e bt e e sbeeennee 3
Li4 LED S ittt e bbbt bttt e b e e bt et et e be e e 3

2 What You Need to Get Started

2.1 WheatNet-IP GP-16P Configuration Tool SOFtWareccccveeviiieriieeiiieciie e 4
2.2 Physical Network CONNECLIONcovuieriiriiiiieniieniieetiete ettt ettt et ebee e 4
2.3 TP AdAress SCLHNES ...voeeicviieiiieeiiiieiiieeeieeeetee et eestteesteeessbeeessseeetbeesnsseesssaeensseeesseensseennseeens 4
2.3.1 Changing the GP panel’s IP AddIesscccueeiiiiriiiie ittt 5
2.4 WheatNet-IP Navigator SOtWArecccceeeieiriieiiie ettt e e nee e 5
2.5 WheatNet-IP GP-16P Help File.......cccuviiiiiiiiiiiiiiie ettt 6

3 Using GPIP-16P Configuration Tool Software

3.1 Programming Procedure SUMMATYcccccoceiiiiiiiiiniiiiiiiiieicite ettt 7
3.2 AdAING DEVICES ...eeiviieiiiieiiieeciiieeeiiee ettt e et e et e et e e eteeesebeeessbeeassseeessseassseeessseeessseeesssesssnseesnns 7
3.3 SeleCtiNg DEVICESveeeiuiiieiiiieeeitie ettt ettt e ettt e ettt e et e ettt e ettt e embeeeenteeeanteeeaneeeeneeeanne 7
3.4 Create @ NeW SCIIPt FIl ..ooiviiiiiiiiiie ettt ettt ee e et e e aeeessneesnnaeennneennns 8
3.5 Script Wizard Button FUNCHOMNS..........ceiiiiiiieeiiiiee ettt eeiitee e eeieeeeeeiteee e s aveeeeseaaeeessesaeeeens 9
3.6 Script Wizard Ouput LIO FUNCLIONSccocviieiiiieiiieeiieeeiie et erte et e eieeeeneeesaee e e eneee e 10
3.7 Script Wizard Custom Action HOOKccouiiiiiiiiiiiiiiiieciie ettt 10
3.8 Compile the SCIIPL ...ccuviiiiiiiiiiiieee ettt sttt st 10
3.9 Starting the SCIIPL ..ovveeiiieeiiieeciie ettt et ee et e et eesbeeesebeeetbeeestaeassseeessseeessseeansseessneennns 11
T O I RSP SRRUSRTSIN 11
3.11 Reviewing the Script Wizard Codeocciieriiiieriiieeiiieeiie ettt e e 12

4 Configuring Device Properties

4.1 Device Properties Tabcoccciiieiiiiiiieeeiiiee ettt ettt e e rree e e e tbe e e e ettaae e e enbaeeeeennaeeas 13
4.2 HOSt Blade SETHNGooeieiiiiiieeiiie ettt e ettt e ettt e st te e et e e et e e nteeeneeeenneeens 13
4.3 Surface CONTIGUIATIONcovviiiriiieiiiiieiiieeeiee et e eieeeeteeeereeestbeeetbeesabaeesssaeessseeensseesssseessseeens 13
4.4 AUAIO PrOCESSOTS ..eeuueiieieieeiiie ettt ettt ettt e et e e et e e et e ettt e sbeeeembeeeenbeeesteeenbeeeenneeens 14
4.5 Soft LIO CONTIGUIAtIONeeiiiieiiiieiiiiecieeeeiieeiieeeiteesteeesteeesebaeetbeesssseesssaeessseeensseennsseennseeens 14

5 LIO Example Using Soft LIO’s

5.1 Configure the Source Signal in Navigator.........c.ccoiuiiiiiieriiiiniie et 17
5.2 ASSIZN GPIP SOft LIO’S ..ieiiiieiiieeiiie ettt ettt se e et e ettt e esaeasnseeesnneeessseeenneesnneannns 17
5.3 Create the Mic Control Script Using Script Wizardcccoeeviiivviieniiieeiieeieeecee e 18
5.4 Reviewing the Script Wizard COdeceocuiriiiiieiiieeieeeic ettt e 19

6 What is the Script Editor?

6.1 Script EQItOr FEATUIESveiiiiiieiiieiciiieciiee et eeiee ettt e st e e et e etreeestaeessseeeesseeessseessseesnnneennns 20
6.2 Third Party EAILOTScccueiiiiiiiiiie ettt ettt ettt e et e e et e e eaeeeenee 21

7 Creating Custom Scripts

7.1 Getting the EXample FIleoccviiiiiiiiiiiieciiieciee ettt ee e etee e e e ssneesnseeenneeenns 22
7.2 Example SCript DESIZNccouiiiiiiiiiiiie ittt ettt ettt et e et e e 22
7.3 Auto-generated Script COMPONENLSeeecvireriieeriiieeiieeriieesrteesereeeereasseeesseeessseesssneesssneesnns 23
7.4 Custom Start UP SUDFOULINE.........eeerveeiiiieeciieeeiee et e et e sreeeebeeetreeetaeessbeeessseeessseeessseeesnneesnns 23

Table of Contents (continued)

7.5 Example SCript STIUCLUIEoooiuiiiiiiieiiieeet ettt et e ettt e et e et e et eeeae e e e e e enee 23
7.6 Example Script —Variables and CONSTANTSccccvieeriiieriiieeiieerte et e et eeee e e eseeeeeneeeenes 24
7.7 Example SCript — SUDTOULINESccccuviieeiiiiiieeeiiiieeeeeiitteeeeiieeeeeeereeeeeetaeeesssnaaeeeeessreeesenssseeanns 25
7.8 EXAMPIE SCIIPE — ACTIONS ...uveeuiiiiriiuieeieenite it ettt e st sttt estee e sttt e steesaeeseteeteesbeeseneemneennee 26
7.9 Custom SCripting SUZZESTIONScccveeiivrreeirererreeerireeetreesoseeesseeassreeessseassseeessseeesseesssseessseesnns 28
7.10 Scripting ROUtEr CONLIOLcoouiiiiiiiiiiiee ettt e et eeaee e 28
7.11 Scripting SUrface CONLIOLccooiiiiiiiieeiiieeeiieeiee e et et e et e eaeeeteeeesseeessseeessseessneennns 28
7.12 Basic Surface fUNCHONScoiuiiiiiiiiiiiieiiie ettt ettt ettt et e bt esaee e 28
7.13 Advanced Surface FUNCHIONSc.coiiiiiiiiiiiiiiiiiniitiie et 29
7.14 Example surf talk COMMANGScc.eeovviiiririiiiiieeiieeeiieeeieeeerte e e eieeeeteeesaeeessseeesnneeenneesnns 29

8 GPIP-16 Scripting Language Overview

8.1 CaSE SENSILIVILY ..eeveiuiiiuiieiieiieite et ettt sttt et ettt et et she e sab e et e b sanesateeateenbeeseeeeaneentee 30
8.2 COMUMEILSoooiiiiiiiiiiiiiiiie e eeee et ee e e e e e e e e e e e e e e ettt e et eeeeeeeeaeeeaaaeeesereesrarraarraaaaannnnnnnnes 30
8.3 ACKIONS .ottt et e e ettt e e e e e e e e e e e e e ettt ettt ——— i ———————————————aaaaaaaees 30
LI A € 1) o1 A/ G F: 1 o) [<C S 30
8.5 Local & Static Local Variablesooooiiiiiiiiiiiiiiceeeeeee e 31
I 00 1 1] 721 11 £SO PRRRY 31
8.7 ATTAYS 1eeieiiiiieeeiieee ettt e ettt e e ettt e e ettt e e e et e e e ettt ee e e e bt eeeaeatbaeee e tbaaeeeaabaaeeeattaaeeeearaeeeens 31

9 GPIP-16 Scripting Language Structure

0.1 SCIIPE STIUCTULE ...eiiiiieiiiee ittt ettt ettt ettt e ettt e ettt e ettt e e etee e s et e ebeeaenbeeeemseeeanaeeanneeesnneeeanne 32
9.2 ConStant DECIATATIONSccooiiiiiiieeeeeieeee e e ettt e e e e e e e e et e e e e e e e e e e e eeeeeeeeeeeaannnns 32
9.3 Global Variable DECIarationscooovviiiiuiiumiuiiiiiieeeeeeeeeeeeeeeeeeeee et eeeeeeeaeaaaeaaes 32
9.4 Global Array DeClarationscceeeeueeriiieeriiieesieeesteesieeesseeesereessseeasseeesseeessseessnseesnsneesnns 33
9.5 Local & Static Local Variable Declarationscc..evveeiieiiiiiiiiiieeeeeeeeeeee e e e 33
0.6 ACHON BOIESovvveeeeeieeee oo e e e e e e e e e e e e e e e e ettt ettt eeeeeeeaaeaaeees 33
L RTANw s (011 B o 1 0 0Tt <) ¢~ RN 34
0.8 SUDIOULINE BOGIES ..vvvvveiieiieee it ettt e e e e e eeeeeaeeees 34
9.9 SUbIOUtINE PArAQmELEIScooiiiiiiiiiiiiieeieeee et e e e e e e e e e e e e e e eeeeeeeeeeenans 34

10 Script Debugging

10.1 Finding Compiler EITOTSooiiiiiiiiiiiiiie ittt ettt et ettt e e 36
10.2 Third Party EITOrSccccuiiiiiieiiiie ittt ettt e e e et e e e e et e e snneeesneeeeneeennes 37
10.3 Using “Print” and Telnet t0 DEDUZc.eeevviiiiiiiiiiiiiciie ettt eene e 37
Appendix A

Al - Example Custom Script File — interlock16.8Sccoceviiiiiniiniiiniiiinieneeceecee 39

11

1 Introduction

This manual will guide you through the process of configuring and programming a GPIP-8 or
GPIP-16 panel using the WheatNet-IP GP-16P Configuration Tool software. This primer is aimed
at familiarizing you with the software’s fundamentals and quickly getting your GPIP-xx panel up
and running using the point and click Script Wizard. The Script Wizard will automatically
generate computer code based on your Button and Parameter selections. This code can be
compiled and downloaded right to your device from within the configuration tool.

Extensive custom scripting tools are provided to accommodate user applications that go beyond
basic audio signal and logic control. The custom script writer will want to make use of the
comprehensive Help File.

Certain sections of this document use material located in the software’s extensive Help file.

1.1 - GPIP-xx Hardware Compatibility

The GPIP-xx hardware is loaded with firmware and software designed to be used with a
WheatNet-IP based system exclusively. These models are physically similar to the devices that
connect to a legacy TDM WheatNet or Bridge router system; however the software is not
compatible. Legacy GP panels may be updated to work with a WheatNet-IP system.

1.2 - Panel Types

The GPIP-8 and GPIP-16 are eight and sixteen button versions of the panel and use an identical
hardware platform. Scripts written for an 8 or 16 button version will run on either one with the
obvious limitations stemming from the surplus or lack of buttons on the two panels.

1.3 - Power Supply

GPIP-xx panels use a wall wart style power supply rated at 9V DC and 1000 mA. The DC output
connector is type - “2.5mm x 5.5mm,” female, with center positive wiring.

Onboard regulators provide the +5 and +3.3 VDC voltages required by the GPC-1 circuit board.

1.4 -LED’s
The following diagnostic LED’s are mounted to the main GPC-1 circuit card.
* Done - momentarily lights during the boot sequence, then is normally OFF.
Note - if DONE Stays lit the firmware failed to load. Contact Wheatstone for repair.
* Link - lights when Ethernet connectivity is established.
* Rx/Tx - signals the reception and transmission of Ethernet traffic.
* +3.3 & 5V - indicate the presence of these power supply voltages.
* LED 0- 3 - factory use only.

2 What You Need to Get Started

Before you get started programming let’s review all of the miscellaneous software and connection
issues.

2.1 - WheatNet IP GP-16P Configuration Tool Software

Make sure you have installed the WheatNet IP GP-16P Configuration Tool software that came
with your product’s install CD-ROM. If you do not have a copy, please contact Wheatstone
Technical Support at 252-638-7000 and we will email or FTP it to you.

This document uses screen shots from version 1.0.0 but the general process will apply to all
versions.

2.2 - Physical Network Connection

The setup and editing of GPIP-xx devices requires an Ethernet network connection. While the
overall WheatNet-IP BLADE system requires a 1000BASE-T Gigabit network, GPIP panels may
be programmed and operated using a 10/100BASE-TX Ethernet connection. There are two ways
to connect:

1000BASE-T or 100BASE-TX LAN - the GPIP-xx device and PC are connected to a common
10/100 or 10/100/1000 Ethernet switch with straight wired RJ-45 cables. This is the preferred
method.

Peer to Peer — a simple cross-over wired RJ-45 cable between the PC and device. A drawback to
this type of connection is that when the GPIP-xx device is re-booted, the PC momentarily loses
the network connection and takes a moment to recover. This loss of connectivity may be a source
of trouble when configuring IP addresses.

2.3 - IP Address Settings
Make sure your PC is configured to talk to the GPIP-xx panel. The following rules apply:

* All GPIP devices in the system are assigned a unique static IP address, no DHCP.

* The device’s factory supplied IP address is printed on a label affixed to the front panel.

* The default factory IP address for GP devices starts at 192.168.87.221.

* GPIP-16P Programming Tool software is used to change the unique static IP addresses
of GPIP-xx panels. You will need the GPIP panel’s MAC address. It is printed on a label
and affixed to a chip on the GPIP panel’s circuit board.

* The PC can use a standard 10/100 (Fast Ethernet) or 10/100/1000 (Gigabit) adapter.

* The PC running the GPIP-16 Configuration Tool must be on the SAME subnet as the
GPIP-xx device. For example if your GP-xx IP address is 192.168.87.221 then the PC’s
Network Interface Card must be given a unique IP address on the 192.168.87.xxx subnet.

Important:
GPIP-xx panel addresses are easily changed using the
WheatNet IP GP-16P Programming Tool software.

Please refer to the next section for details on changing a GP panel’s IP address.

2.3.1 - Changing the GP panel’s IP Address

If you need to change the IP address of a GPIP panel, start up the WheatNet-IP GP-16P
Programming Tool Software. Choose the menu item “Hardware>Assign IP Address.” The
following dialog box will appear:

o ; . 7| Fill in the required information as follows:
L _UESASSIBMEnt L_j

Device Filter: MAC Address: get this twelve character hexadecimal
MAC Address: TNeare ety number from the label affixed to a chip on the GPIP panel’s
circuit card. Wheatstone MAC addresses begin with the
sequence 0050C223xxxx.
New IP Settings:
Name: Host-GP Name: any 8 character name for this device.

IP Address: any unique static IP address on the WheatNet-IP
system’s subnet. (i.e. 192.168.87.221)

IP Address:

Subnet:
— Subnet: Standard Subnet Mask for your WheatNet-1P
CEUEER 152.165.57 1] subnet. (i.. 255.255.255.0)
Hoy et E Gateway: enter the WheatNet-IP system’s Gateway or

255.255.255.255 if no gateway is used.
f START ‘

3

Once you have filled in the IP Assignment form:

* Press the START button located at the bottom of the form.

* Cycle the power on the GPIP panel - while re-booting, the GPIP will request its network
settings.

* The “Requests” counter box should increment indicating that the new network settings
were requested by the GPIP panel.

To test the new network settings:
Open a command prompt window and use the “ping xxx.xxx.xxX.xxx"’ command to see if the
GPIP panel responds to the new IP address setting.

To open a command prompt window:
From the Windows XP Start Menu select Run and type “cmd” without quotes then press ENTER.
From Windows Vista Start Menu type “cmd” or “prompt” without quotes in the Start Search box.

2.4 - WheatNet-IP Navigator Software

The GPIP-xx panels may be programmed to control audio and logic signal cross-points, fire
Salvos, activate surface presets, and many other functions. Depending on your application, the
GPIP-16 Configuration Tool may require you to enter Source and Destination signal ID’s, Salvo
indexes, and other numerical data based on ID numbers generated in the WheatNet-IP system. You
will need access to the WheatNet-IP Navigator software to access the required information.
Navigator is also used to create optional “Soft LIO” signals for certain applications.

2.5 - WheatNet-IP GP-16P Help File

The WheatNet IP GP-16P Configuration Tool software has an extensive Windows Help Menu
system. You will definitely want to utilize this asset while programming as it can be an invaluable
aid, especially when creating custom scripts.

% Help B
: 3 s
wE e78
I Hide Print Q_ptions
-~
Contents | ndex | Search]| WheatNet IP GP-16P Setup Tool I
Setup GUI Operaﬁoﬁ [The GP-16P Setup Tool (or GUI) allows you to easily develop a uniquely
@ Panel Operation customized button panel for your live broadcast or production studios. The
@ Device Setup flexibility of your GP-16P button panel comes about due to an architecture =
= @ Script Wizard based on a virtual machine in the button panel microprocessor which very
[2] Script Compile & Download efficiently executes compiled bytecode. This GUI provides you a mechanism
@ Script Editor to develop your unique button panel application.
= (Scripting Language

You have access through this GUI to a point and click Script Wizard which

Bl meacn hstire provides selegtion of typical fgn(_:tions for ea!ch bL_xtton of your button panel.

) Statements _Whelj thg typlc_al functions_ built into t_he Scnpt_ W|z_a rd fall short of your

T —. imagination, this GUI provides you with an editor in which you can write
custom scripts in a programming language somewhat like a cross between

the C and Basic programming languages. You do not need to be a computer

programmer to modify your button panel application, since most functions

can be performed through the Script Wizard. When (if) you wish to take the

leap to a custom script, an introductory level of programming experience is

all which is required to manually write custom scripts.

[2] Language Overview

[2] Boolean Expressions
[2) Auto-Generated Code
@ Actions
[2] Script Debugging
@ Router Functions
@ LIO Functions
@ String Functions

BH®EE

@ Surface Functions Main Window
® Audio P Functi
: Blua;: F[:;i:zi:r e The main window of the GP-16P GUI is made up of a device dock, output

2]

g « dock and the main set of three tabs. The device dock displays all devices
g g;gzmﬁ;t:ggons that have been added to this PC's GP-16P GUI and when selected changes
[Example Scripts which one the GUI is currently connected to. The output window displays

status, wamings and error messages during compilation. Three tabs are

shown in the main window, the Script Wizard, Script Editor and Device
W Properties. The title bar of the main window shows the name of the open
script file and the bottom right displays whether or not the GUI is connected
to the current button panel.

[+

< | 1l | »

3 Using GPIP-16P Configuration Tool Software

OK, now that we have the network connection issues taken care of we can start the GPIP-16P
Configuration Tool software and program the panel to perform some basic functions using the
Script Wizard. The general procedure we will follow is listed below.

3.1 - Programming Procedure Summary
The steps required to program your GPIP-xx device are listed below - let’s review them and then
perform each in turn.

* Add the Device info to the GPIP-16P Software Tool
* Connect to the Device in Online Mode

* Open a New Script File

e Use Script Wizard to map functions to buttons

* Compile Script and Download to Device

e Start Script on the Device

e Test Functionality

If you haven’t already done so, start the GPIP-16P Configuration Tool Software.

3.2 - Adding Devices | Add De
Before you can program a GPIP panel you need to define ' —
each panel to be a “device” in your system.

Use the Menu item Hardware->Add New Device...

Enter an 8 character Name for the panel and its IP address. IP Address:
The IP address tells the software which device to talk to

when you choose a device name, it doesn’t change the IP l Ok] Cancel
address of the panel. To change IP addresses please see
Chapter 2.

Name:

3.3 - Selecting Devices
As you add each new GPIP panel using the Add Device form, they appear in alphabetical order in
the Devices list located on the left side of the main screen.

yheatiNetlPAG PRI bR G osramabil esiavs

* You can mouse over the Device
name in the list to see its [P

GPIP-221
GPIP-222

Script Wizard Script Editor Device Properties

GPIP-93 . Buttons Button : address.
x Qutput LIOs
% Custom Action Hooks Function:

When you wish to program a GPIP

GUCREEEREEER ;| 5]
o :

192.168.87.99 N . .
192.168.67.%9] F;ZE panel, you simply select it from the
@ Mom devices list.
Conn
Maomg¢ _—

Tannl

Check that you are connected in the Status Bar at the bottom.

If this field is stuck on "Connecting...” then you have an Ethernet issue, perhaps related to a
wrong [P address.

3.4 - Create a New Script File

Select the Menu item File->New and the Script Wizard opens automatically.

The Buttons list in the scroll pane on left side of the Wizard is where you select which GPIP
panel button you would like to program. Simply click on the button name 1-16 to select it.

The right side of the Wizard is where you select a function for the selected button. Go ahead and
click through the various Functions. You will notice that the Parameters field will display various
data entry fields depending on the function selected. Parameters are usually integers that
correspond to BLADE signal ID numbers or Salvos as configured in the WheatNet-IP Navigator
software.

Script Wizard Script Editor ~ Device Properties

=l . Buttons Button 1
« Button 2 Function: Parameters:
X Button 3
¥ Button 4 None [Custom Destination:
¥ Button 5 Fire Salvo
¥ Button 6 % Momentary XYC Source:
% Button 7 Connect XYC
X Button 8 Momentary LIO
X Button 9 Toggle LIO
< Button 10 Tally LIO
¢ Button 11 &
 Button 12 Surface Event
¥ Button 13 Surface Ch On
« Button 14 AP Preset
{ Button 15 Util, Mix Ch On
« Button 16 ACI Command

¥ OutputLIOs
K Custom Action Hooks

Apply Cancel Help

|[GPIF-99 Connected

3.5 - Script Wizard Button Functions

The following functions may be mapped in any combination to the GPIP-xx buttons. Note that in
some cases a button may perform actions on the press, release, and over-press of the switch. The
software’s Help file includes all the pertinent details; go to Contents>Script Wizard>Button
Properties for more information.

Function Summary
None/Custom — select this if you are not using the button or will write a custom script for the
button.

Fire Salvo — select this to fire a Salvo created in Navigator. Enter the Salvo’s Index number in
the Press and Release Parameters fields. Salvos are created in Navigator and are simply a stored
set of one or more routes and/or disconnects. The first Salvo in the Navigator Salvo list is index 1,
second in the list is 2, etc. You can have a different Salvo fire on both the Press and the Release
of the switch. Use this function when you need multiple “patches” to happen simultaneously, like
switching speaker and HP feeds to a shared talk studio.

Momentary XYC — XYC stands for X-Y Crosspoint - this option is used to momentarily interrupt
a destination with a new source. Useful for talkback or EAS, the interrupted Destination reverts
back to the previous Source when the button is released. Enter the Destination and Source signal
ID numbers from your Navigator configuration’s Detail window. You can display Signal ID
numbers in the Detail Dock at any time by left clicking on the desired signal in the System
Crosspoint grid. Make sure the Detail Dock is visible on the lower left side of Navigator by
clicking on the Detail Dock button at the top of Navigator.

Connect XYC — this function will make a one time X-Y Crosspoint route. Enter the Destination
and Source signal ID numbers from your Navigator configuration.

Momentary LIO — this function will trigger a logic connection ON. This function requires
mapping of Soft LIO’s in Device Properties - see Section 4 or Help File for specific details.

Toggle LIO — this function with toggle the LIO state ON/OFF with each press of the button. This
function requires mapping of Soft LIO’s in Device Properties — see section 4 or Help for specific
details.

Tally LIO — use this to turn the button into an indicator lamp. The LED in the button will light
when the logic condition is met. Button presses are ignored. This function requires mapping of
Soft LIO’s in Device Properties — see section 4 or Help for specific details.

Surface Event — use this to take a Preset on a Wheatstone control surface. You need to specify
two parameters for this function:
Surf: - is the surface ID specified in the Device Properties form. Surface ID numbers are
mapped to the GP-xx panel using the Device Properties tab. Enter an IP addresses for
each surface the panel needs to talk to. Entering 1 for the Surf: parameter will cause a
button to talk to the IP address associated with Surface 1: in the list.

Event: - this parameter is case sensitive - Name of the Preset located on the surface.
Some surfaces like the G4 have only push buttons, so index numbers 1-4 map directly to
the buttons.

Surface Ch On — Tum a surface’s input fader channel On and Off.
Surf ID: Selects a surface, 1 through 8, as defined in the Device Properties tab.
Input Ch: Select the input fader channel, 1- 48.

AP Preset — Use this function to change Presets on a Vorsis Audio Processor.
Audio Proc: Selects the processor, 1-4, as defined in the Device Properties tab.
Preset: Select the Preset number to take on the selected processor.

Util. Mix Ch On — Use this function to turn a fader or main mix ON in a BLADE’s Utility Mixer.
Mixer ID: Select Utility Mixer 1 or 2 in the host blade defined in Device Properties tab.
Channel: Select input fader 1-8 or output A or B.

ACI Command — ACI Device: Host BLADE or any surf 1-8 from dev props
Press: ACI string sent on button press Release: ACI string sent on button release.

3.6 - Script Wizard Output LIO Functions

The GPIP panel provides direct access to the logic states of the 64 Soft LIO’s that reside inside
the Host BLADE specified on the Device Properties tab. The GPIP panel “subscribes” to the Host
BLADE and is automatically updated by the Host BLADE whenever the state of the 32 input or
32 output Soft LIO’s changes. GPIP scripts may read and change the state of the Soft LIO’s in the
Host BLADE.

By using the functions in this section you can trigger specific actions based on the high or low
state of any given Soft L1O. Please see the Help File for Details.

3.7 - Script Wizard Custom Action Hook

Some GPIP panel applications may require that a user’s subroutine be run at boot time to reset or
read values from the system in order to synchronize the panel to the “real world”. The Custom
Action Hook allows you to define this subroutine call. Using this function allows you to easily
mix custom actions with script wizard actions. Please see the Help File for Details.

3.8 - Compile the Script

Once you have mapped functions to the buttons you are ready to compile the auto-generated
Script Wizard code and download it to the GPIP-xx panel. To compile, select the Build >
Compile & Download menu choice. If this is the first time you have compiled this script, you will
be prompted to save it. Give your script a name and click Save to complete this process.

If the compile is successful, you will see the following feedback in the compiler “Output”
window located at the bottom of the screen.
If you do not see the “Output” window on the screen, select the menu Item View > Output.

Apply Cancel Help

(WheatNet IP Programmable Panel Compiler "awipppc" wversion 1.2.0
|Copyright 2005,2009 Wheatstone Corp, All rights reserved.

Pl Compiling: C:/GPIP-Scripts/Test Some Functions2.ss

Kl Okay. ..

10

3.9 - Starting the Script

When the Compile & Download btn_led (15, 2) // Flash for error

processes are completed the GPIP b al
panel will automatically start the I <[>
new script. \wheatNet IP Programmable Panel Compiler "gwipppc" version 1.2.0

\Copyright 2005,2009 wheatstone Corp, All rights reserved.
[l Compiling: C:/Users/Paul/MicPanel-Example.ss
. . Fll okay. . .
Dependlng on your SCI'lpt you may Z 4

need to press a button(s) to get the 7
LED’s to light up. A starting script

&4 Downloading Script...

| Z

Note that once the code is transferred into the GPIP-xx non-volatile flash memory, it will boot
your Script every time the unit is powered up.

3.10 - Testing

Now its time to see the results of the code you have downloaded to the GPIP-xx panel.
Obviously, you can go to the button location and listen and watch for changes as you press the
buttons. An easy way to check many functions is to have the Navigator software running while
you press the buttons. If you align the grid so that the signals of interest are visible, you can
watch as temporary, or static connections are made. You can even watch as Salvos are taken to
see multiple connections change. This is handy when de-bugging scripts, too. Because the button
code is portable, you can develop multiple scripts using a single button panel in your office or
rack-room, verify the code works as intended, and then download the working scripts to the
designated panels in a Studio or Control room.

11

3.11 - Reviewing the Script Wizard Code
You can use the Script Editor to see the auto-generated (AG) code produced by the Script
Wizard. To view the code select the Script Editor Tab.

Here is a sample Script and its code descriptions:

WheatNet 1P GP 16P C /Users/PauI/tgst some functlons S8

Script Wizard | Script Editor = Device Properties

//AG_START
Wizard code starts here > | // All code between the AG_START and AG_END tags is auto generated and should no
// WheatNet IP Scr1pt wWizard - GUI v1.0.0
// precedes all Comments. //AG_BTN1 TYPE="SALVO" =1 REI=""
//AG_BTN2 TYPE="XYC_MOMENTARY" DST="0040022" SRC="0040119"
. //AG_BTN3 TYPE="XYC_CONNECT" DST="0040033" SRC="0040300"
Button types are listed as > | //AG_BTN4 TYPE="LIO_MOMENTARY" LED="0"
//AG_BTN5 TYPE="LIO_TOGGLE" LED="0"

Comments |’/ gTNG TYPE="LTO_TALLY"
//AG_BTN7 TYPE="SURF_PRESET" SURF="1" PSET="4"
//AG_BTN8 TYPE="SURF_CHON" SURF="1" CH="12"
//AG_BTN9 TYPE="AP_PRESET" AP="1" PSET="7"
//AG_BTN10 TYPE="UMIX_CHON" UMIX="1" CH="7"
//AG_BTN11 TYPE="ACI" DEV="1" PRS="INPUT:7 |FADER:192" REL="INPUT:7 |FADER:0"

variable: AGB_old_src_2 // Storage for button 2 old source signal
. variable: AGB_toggle_5 = 0 // Storage for button 5 toggle state.
Variables defined > |variable: AGB_chon_8 // Storage for button 8 mixer ch ON flag
variable: AGB_chon_10 // Storage for button 10 mixer ch ON flag
variable: AG_temp // temporary variable

. . action: STARTUP
Startup action calls a timer >

function to conﬁgure startup state. tmr_create_periodic (3, "AG_TIMER_FUNC")

action: AG_TIMER_FUNC
btn_led (6, lio_get (6))
AGB_chon_8 = surf_get_input_on (1,12)
if (AGB_chon_8 == -1)

. AGB_chon_8 =
Auto-generated action code > , btn_led (8, 2) // Flash for error

else
btn_led (8, AGB_chon_8)

AGB_chon_10 = umix_get_input_on (1,7)
if (AGB_chon_10 == -1)

AGB_chon_10 =
_ btn_led (10, 2) // Flash for error

12

4 Configuring Device Properties

Some applications may require the GPIP-xx panel to talk to control surfaces or interact with
certain signals that have logic functions mapped to them. For instance you may wish to take an
Event or turn a channel ON and OFF on a control surface. You might also wish to use the GPIP
panel at a talent microphone location in a studio. These applications require you to “tell” the
GPIP panel some information about the surface and logic signals. This is what the Device

Properties form is for.

4.1 - Device Properties Tab

While ON LINE and connected to the button panel, open the Device Properties dialog by clicking
on the Device Properties tab in the main window. See the dialog box below.

4.2 - Host BLADE Setting

If you intend to use the Soft LIO functions to interface with physical logic signals you will need
to identify the BLADE in your system that the GPIP panel will talk to. Enter the IP address of any

BLADE in the system. A BLADE may “host” multiple GPIP panels.

4.3 - Surface Configuration

If you are using your GPIP button panel to interface with a Wheatstone surface, you will need to
identify the IP address of each surface in the Device Properties tab of the button panel. The setup
steps only need to be performed once since the setup information will be stored in the button

panel’s flash memory and also on your PC.
Select the GPIP device you wish [

to setup, then make sure you are
Connected. Use the “Device
Properties” dialog box to
specify the surface IP addresses.

Enter the IP address of each mixer
in the Surfaces tree on the left side
of the dialog box.

You may specify up to 8 surface IP
addresses. The Surface 1: address
corresponds to surface ID “1”in a
script.

For example, when you specify
“Surface 1” in a Surface Function
in the Script Editor, or a surface-
related function in the Script
Wizard, the Surface 1 IP address
will be used.

The second IP address from the top
corresponds to surface 2, the third
from the top is surface 3, etc.

Unused surfaces should be left blank.

AP 4

Apply

Cancel

Help

L Wheath sl PAGEE o= ProsrampbalesiWheatstone/Wheatssosis - (5] (|
|| Script Wizard Script Editor Device Properties
Blade: LIO Map:
IP address: BEFBTER:FASUI Outputs: Inputs:
| Soft L10 Index | | Soft LIO Index
Surfaces: 1 |17 L |1
Surface 1: ‘2‘* 18 '24 2
Surface 2: 3 |19 3 |3
Surface 3: 4 |4 4
Surface 4: S| % 5 | S
Surface 5: 6 L 6
Surface 6: ? | ? 7
Surface 7: S | B g
9 9 |9
Surface 5: [N 2
10 10 10
Audio Processors: L ol
AP 1: 12 12 |12
AP 2; e 12 05
14
AP 3: P 1

13

Important Note: The Device Properties controls will be disabled if you are not connected to the GPIP device. If you
are disconnected, you are actually looking at the device properties which are stored on your PC’s hard drive. These
properties may not truly reflect the properties of your device, if the device has been more recently configured from
another PC.

4.4 - Audio Processors
If you are using your GPIP button panel to control Vorsis Audio Processors, you will need to
identify the IP address of each processor in the Device Properties tab of the button panel. The
setup steps only need to be performed once since the setup information will be stored in the
button panel's flash memory and also on your PC.

® Select the Vorsis device you wish to setup.

® Make sure you are Connected.

® Use the Device Properties tab to specify the processor’s IP addresses.

4.5 - Soft L1O Configuration

If you are using a GPIP button panel to interface with Logic I/O in the WheatNet IP system, you
will need to configure Soft LIO’s in the Device Properties tab. Each GPIP Panel will store its
own Device Properties settings.

Soft LIO Features
* Soft LIO’s are 64 virtual logic ports residing inside the Host BLADE.
* Map soft LIO’s to GPIP buttons for interfacing to physical Blade logic ports.
* Custom scripts can access any of the 64 soft LIO’s in a Host BLADE.
* Each GPIP panel utilizes up to 16 inputs and outputs.
* Create logic Source signals in Navigator for any Soft LIO Inputs.
* Create logic Destination signals in Navigator for any Soft LIO outputs.
* Associate Soft LIO’s with Audio or Logic I/O Only signals.
* Route Soft LIO’s just like hardware logic.
* Use LIO_HI and LO Actions to perform any system function when a specific Soft LIO
Output is Hi or Lo.

Note: Some applications may not need the Navigator signals; it all depends on whether you need to route
soft logic to/from a GPIP panel and a BLADE’s physical logic ports.

You may map up to 16 Input LIOs and 16 Output LIOs, one for each switch on a GPIP-16.

Input LIOs correspond to Logic I/O values which are fed IN to the router matrix. Typical types of
input LIOs are for switch functions like Start/Stop or ON-OFF—Cough-Talkback remote logic
signals associated with a microphone source. In a discrete hardwired system these signals would
typically then be fed into a physical logic input line.

Custom scripts for your GPIP-16 can drive input LIOs using the lio_set() function.

Output LIOs correspond to Logic I/O values which are fed OUT of the router matrix. Typical
types of output LIOs would be machine start, machine stop, and ON and OFF tally logic signals
to drive remote panel switch LED’s associated with a microphone source. In a discrete hardwired

system these signals would typically come from an output logic line on an LIO card in your
audio router, then feed to a logic line on your automation system or to a switch’s LED.

In your GPIP-16 you can read output LIOs using the lio_get() function.

14

The first input LIO corresponds to LIO id “1” in the lio_set() function, the second to LIO id “2,”
etc.. The first output LIO corresponds to LIO id “1” in the lio_get() function, the second to LI1O id
“2,” etc..

Note: The controls will be disabled if you are not connected to the GPIP device. In this situation
you are looking at the device properties which are stored on your PC’s hard drive. These
properties may not truly reflect the properties of your device, if the device has been more recently
configured from another PC.

15

5 LIO Example Using Soft LIO’s

This example describes a method for creating a microphone fader control panel using four buttons
on a GPIP panel. The GPIP Soft LIO mapping feature is used to allocate resources to “virtually”
wire up the four switches and two LED signals we will use on the panel. The Soft LIO’s mapping
the remote control signals will also be assigned to an audio signal using Navigator.

Before we get on with the following example it is useful to understand that there are two primary
ways to approach remote control of a surface channel using the GPIP panel. You can write a
custom script using ACI commands to control a specific fader channel on a surface or you can
use the Device Properties to “point” the GPIP panel to a specific source signal, which has been
configured in WheatNet-IP Navigator with Soft LIO logic associations. The ACI based script will
only work on a single fader strip while the Soft LIO approach will work on any fader in the
system. The path chosen also dictates how your overall script will be written. The former uses
surface functions in a custom script while the latter uses the Script Wizard.

For the sake of this example, let’s assume that we have a microphone source named “HOST
MIC” in our WheatNet-IP system. We will be placing a GPIP button panel next to the host
announcer in a talk studio. We would like to use some of the GPIP buttons to provide the host
with remote ON/OFF, Cough, and Talkback capability. We would also like the GPIP panel’s
ON/OFF button LED’s to follow the console’s fader status.

We will program the following functions:

Audio This GPIP panel will map GP buttons 1-4 to remotely control any surface
Signal | fader that has the the “Host Mic” audio Source signal.
Blade Input Signal ID - 00400001
GP Panel Soft L1IO
Switch # | Function Signal Type Index Direction

1 Remote ON Toggle switch 21 Input

2 Remote Off Toggle switch 22 Input

3 Cough Momentary switch 23 Input

4 Talkback Momentary switch 24 Input

1 On Tally External LED 25 Output

2 Off Tally External LED 26 Output

The toggle type Remote ON and OFF switches will have LED indicators that follow the state of
the fader channel on the surface. Cough and Talkback are momentary switches that are only
active when pressed and have LED indicators driven internally.

Proceed with the setup in the following order:

* Assign Soft LIO “ports” to the HOST MIC audio signal with WheatNet-IP Navigator
software.

* Assign Soft LIO “ports” to the GPIP panel with WheatNet-IP GP-16P Configuration Tool
software.

* Script Wizard is used to generate the script.

* Compile Script and Download to the GPIP panel.

This approach has two benefits- the resulting script is very clean and the GPIP panel follows the

microphone source signal to whichever surface it is connected to. Let’s get started.

16

5.1 - Configure the Source Signal in Navigator
The first thing we need to do is configure the “Host Mic” source signal with some Soft LIO

signals to perform the desired functions. The following figure shows how the LIO’s will be
defined for “Host Mic” in the Navigator GUL.

Soft LIO 27

u Add - Assign an LIO to Host Mic [B S|
: : Edit LIO’s
Wire Assigned |nver:|Jirectior Function :
. | e, [T | ' In Navigator

Soft LI0 21 HostMic No Input Remote On
Soft LI0 22 HostMic No Input Remote Off
Soft IO 23 HostMic No Input Cough * Right Click .On th§ Signal Name in
Soft 024 HostMic No Input Talk Back the Crosspoint grid.
Soft LI0 25 HostMic No Output On Tally ® ¢ Se!eCt Modify Signal.

i 0 26 Of m ‘ e Click LIO Inf 0 Tab.

Dy * Click Add.
Soft LIO 28 v
Seftloz9 =) Choose any free Soft LIOs’ and add the
i 5 4 switch inputs and two LED outputs.
Close
A Bit About Soft LIO’s

Sixty four Soft LIO s reside inside each BLADE and are available system wide to any GPIP

panel. When you define a Host BLADE in the GPIP Programming Tool you are making the Soft
LIO’s from that BLADE available to the GPIP panel. Defining a Soft LIO signal only differs from

defining a real physical LIO signal in that we do not require real physical hardware for the I/O.
Soft LIO’s may be mapped in Navigator to audio or logic i/o only signals and routed just like
hardware logic ports. A GPIP panel can access up to 32 soft I/O’s in the defined Host BLADE.

5.2 - Assign GPIP Soft LIO’s

Let's assume that we want to use the first four buttons on our panel to perform these functions.
We need to map the LIO’s from the first step above to the panel’s first four switches. The Script
Wizard assumes a one-to-one correlation between the physical switch on the panel and the Soft
LIO Index numbers in the LIO Map on the Device Properties tab. For proper operation, we need
to match the desired Soft LIO values (1-64) with each switch’s LIO Index number (1-16).

The following figure shows how we will configure the LIO Map properties for this example.

M WheatNet IP GP-16P - C:/Users/Paul/MicPanel-Example.ss

[a\@‘—c&

Assign Soft LIO Indexes

Ln -—— col

——][GP-Host Connected |

Script Wizard = Script Editor | Device Properties
Guestl
i Blade: 10 Map: * Make sure you are connected to the GPIP
RackRoom | TP address: RO OuPu: Py panel and have selected a Host BLADE 1P
—— _goﬂ LIO Inde 430& Lio lndg address.
Surface 1: pEVRGER:y Ik} 1 2 1 21
2 |26 12 |22
surace 2: (NS 3 | 3 |23 * Define the first four Input LIOs to match
rece s o the Soft LIO’s chosen for the Remote On,
sufoce +: ([5 <unused> 5 | <unused>
suroce s: (N6 <1"5e0> 6 Remote Off, Cough, and Talkback LIOs for
surtace : (| | onused> | || <unused> the "HOST MIC" signal.
3 8 | <unused> 8 | <unused>
Surface 7: _ 9 | <unused> 9 | <unused>
surface s: [NSNS 10 <unused~ 10 | <unused> * Define the first two Output LIOs to match
11 | <unused> 11 | <unused>
Audio Processors: 12 | <unused> 112 | <unused> the On_Tally an}d Off_Tally LIOs for the
1 [3 <vnused> 13 | <unused> "HOST MIC" signal.
AP 2: _ 14 | <unused> 14 | <unused>
e 15 | <unused> 15 | <unused> .
s R e 16 |64 * Click Apply.
oo N
Apply Cancel Help
wheatNet IP GP16P Setup GUI 2
|2} version: 1.0.0 Built: Sep 10 2009 13:59:44
M) Copyright wheatstone Corp. 2009
‘i wheatNet IP Programmable Panel Compiler "gwipppc" version 1.2.0 %
Pl ~~nvsrisht ONNS 90NA whastctana Carn A1l _rinhtc _racarva.

17

Important Distinctions

When talking about virtual logic i/0 it is easy to get confused over the “direction” — in or out — of
the signal. Direction is determined from the point of view of the crosspoint matrix. The following
guidelines apply:

* "Input" LIOs are sent into the router matrix. These are switch closures from physical logic
input ports, GPIP panel switches, or even some Navigator created signals like silence Detect
logic.

e "Qutput" LIOs are sent out of the router matrix. These signals may cause a physical output
“relay” to close, cause a LED to light on a GP panel, or even provide a virtual output port
whose state can be monitored and acted upon in a GP script.

One way to keep it all straight is to consider the switch signals from a GPIP panel as contact
closures that must be wired to the crosspoint matrix inputs. Output closures from the crosspoint
matrix connect to switch LED’s on a GP panel.

5.3 - Create the Mic Control Script Using Script Wizard

Now we want to use the Script Wizard to generate a script for the GPIP panel. All code will be
generated automatically. You will be able to see the results in the Script Editor tab later.

Using the Script Wizard is easy. Just click on the Button you want to configure, select a function
for the button, set any optional parameters, and click Apply at the bottom. Don’t worry if you
make a mistake, you can always go back and change or remove button programming selections.
Program buttons 1-4 — our ON-OFF-COUGH-TB switches - for Momentary LIO. The ON OFF
switches will have the LED driven from an external LIO (state of the surface fader channel).
Proceed as follows:

fin WheatNet IP GP-16P - C;/Users/Paul/MicPanel-Example.ss** [ESR N
GPH Script Wizard ~ Script Editor = Device Properties
Guestl -+ Buttons Button 1
Guest2 % Finction: P .
RackRooH o= ilsids Ceniiies * Configure the first and second
3 Bunon E None / Custom | LED Drive: buttons to be Momentary LIO
v Button Fire Salvo . .
v Button 4 Momentary XYC [functions with External LED
X Button 5 Connect XYC drive.
: gutton_6, = ;';’g";”i‘;’g L * Then configure the third and
X utton
X' Button 8 Tally LIO fourth buttons to be Momentary
¢ Button 9 Surface Event LIO functions with Internal
¢ Button 10 Stirface Chion LED drive.
AP Preset
gatiron util. Mix Ch On
¢ Button 12 ACI Command
X Button 13
X Button 14
X Button 15
X Button 16
X Output LIOs
« Custom Action Hooks
Z Apply Cancel Help
Downloading Script. .. =
gl Okay . . .
;7 Starting Script... e
jll Device Status [2] v]

Ln -—- Col ---|[GP HOST Connected ‘/A

18

5.4 - Reviewing the Script Wizard Code

The following script will be generated. The button 1 & 2 actions simply drive the LIOs and LEDs
corresponding to the buttons. A periodic timer drives the button 1 & 2 LEDs with the value read

from the LIO corresponding to those buttons. The button 3 &
LEDs corresponding to the buttons.

4 actions simply drive the LIOs and

//AG_START

// All code between the AG_START and AG_END tags is
auto generated and should not be modified.

// WheatNet IP Script Wizard - GUI v1.0.0

//AG_BTN1 TYPE="LIO_ MOMENTARY" LED="1"
//AG_BTN2 TYPE="LIO_ MOMENTARY" LED="1"
//AG_BTN3 TYPE="LIO MOMENTARY" LED="0"
//AG_BTN4 TYPE="LIO_ MOMENTARY" LED="0"
action: STARTUP

{

}

action: AG_TIMER FUNC

{

btn_led (1, lio_get (1)) // check Soft LIO Out #1 & light ON led id 1.

btn_led (2, lio_get (2)) // check Soft LIO Out #2 & light OFF led if 1
1

tmr_create_periodic (3,"AG_TIMER FUNC") //check LED states every 300mS.

The auto-generated script code for the first two buttons will a

ssert the input L1O while the button

is pressed and de-assert the input LIO when the button is released. The button LED will light

from the results of the periodic timer query shown above.

action: BTN 1 PRESS //mapped as ON
lio_set (1,1)

action: BTN 1 RELEASE

l{io_set (1,0)

z}tction: BTN_2 PRESS //mapped as OFF
l{ioiset 2,1)

action: BTN _2 RELEASE

l{io_set (2,0)

a}lctionz BTN _3 PRESS //mapped as COUGH
l{io_set 3,1)

lio_set (3,1)

action: BTN _3 RELEASE

{
btn_led (3,0)
lio_set (3,0)

}
action: BTN_4_ PRESS //mapped as TalkBack

{
btn_led (4,1)
lio_set (4,1)

action: BTN 4 RELEASE

{
btn_led (4,0)

probably require some head scratching and - you guessed it —

19

The auto-generated script code for
the third and fourth buttons will
assert the input LIO while the
button is pressed and de-assert the
input LIO when the button is
released. The button LED will light
to indicate that the button is down.

Note:

In this example we have seen how
the Script Wizard associates a
button with the corresponding LIO
from the LIO definitions in the
Device Properties dialog box. This
one-to-one correspondence is only a
limitation of the Script Wizard. If
you are writing a custom script you
may access any LIO defined in
Device Properties from any action
or subroutine.

The Script Wizard is a nice way to
get some fundamental features up
and running quickly and will suffice
for many broadcast applications.
Certain applications with multiple
panels in which actions are
triggered under Boolean conditions
are a bit more complex and will

a custom script.

6 What is the Script Editor?

The Script Editor is a specialized text editor built into the GPIP Programming tool. This editor
provides a convenient way to write custom scripts and also view Script Wizard code.

GP-xx scripts are actually specially formatted text files saved with a “.ss” file extension.

The Script Editor automatically separates the Script Wizard code from your custom code by
dividing the file into two panes — the top “read only” pane has a gray background and houses the
AG or auto generated Script Wizard code. The bottom pane is the editable text editor pane used
for writing your own scripts.

6.1 - Script Editor Features
* Script Wizard code is separated and displayed in a gray “read only” pane.
¢ Script text is displayed in a “context sensitive” color scheme with comments in green, and
keywords in blue, etc.
¢ Standard text select, cut, copy, paste, undo, and redo functions.
* Compiler error finder jumps the cursor to the problem line when the reported error is clicked.

Y WheatNet IP GP-16P - C:/Users/Paul, |cPanel—ExampIe£*- [y

Script Wizard | Script Editor | Device Properties
Guestl //AG_START -]
Guest2 // All code between the AG_START and AG_END tags is auto generated and sh
RackRoom // WheatNet IP Scr1 pt wizard - GUI vl 0 0
//AG_BTN1 TYPE="LIO_MOMENTARY" = _
//AG_BTN2 TYPE="LIO_MOMENTARY" Auto generated code
//AG_BTN3 TYPE="LIO_MOMENTARY" 1
//AG_BTN4 TYPE="LIO_MOMENTARY" Window
action: STARTUP
{
tmr_create_periodic (3, "AG_TIMER_FUNC")
action: AG_TIMER_FUNC (=]
<] <>
//The gray window above is for AutoGenerated Script Wizard code -do not modify.
//This space is where you write your custom script. Syntax is important. Use the Help File for
// details on syntax .
//Declare variables first
// example
variable: myvariable = 0 User Scrlpt Edltlng
// Put Subroutines next :
subroutine: mysubroutine Wlndow
{
my subroutine code here
}
/[Place Actions last
action: MYACTION
my action code here [}
b
// The OUTPUT window is below. this is where Compiler status and errors are reported.
X - . -
5] Downloading Script... = .
okay. . . Compiler Output
Starting Script... Z Window

Device Status [2]

20

6.2 - Third Party Editors

Scripts may also be opened, written, and edited in a programming oriented editor but care must be
taken to be sure that the file structure, formatting, and script syntax is maintained. Also, when
using a third party editor, make sure you do NOT make any edits in the area between the

//AG START and //AG END tags. The editor built into the GPIP-16P tool prevents you from
editing this area, but a third party editor will NOT do so.

Avoid using generic text editors like Notepad or Wordpad for script creation. You will know right
away at Compile time if there is a problem.

If you plan on doing a lot of scripting you might consider using a third party programming editor.
Notepad++ is a nice freeware editor. When you open a GP script in Notepad++, you can choose a
“Language” skin, like “Flash actionscript,” that will give you line numbers and a context sensitive
text color scheme. You will still have to open the file in the GPIP-16P tool before you compile —
be sure to save the file in the editor first.

You can do an Internet search for “Notepad++” to download this editor.

21

7Creating Custom Scripts

A good way to learn how to write custom scripts is through experimentation - so we will open a
custom script and examine the format and syntax of the file. Then feel free to edit button behavior
and add features. You can also use the Script Wizard to generate code to see specific function
examples, then copy and paste into a new file for further experimentation.

7.1 - Getting the Example File

The example script file, interlock16.ss, is located in Appendix A of this document and may be
copy and pasted into the Script Editor user’s window. Copy and paste details are located in
Appendix A. If you are reading this from a printed manual you can get this manual in electronic
form from the www.wheatstone.com website under Application Notes or User Manuals.

7.2 - Example Script Design

The custom script used in this example is designed to act as an “interlocked” source selector with
latching LED indicators. Each button will “patch” a unique audio Source to a common
Destination and light the button’s LED on the panel. The button’s LED must be “latched” ON so
the operator knows which button is currently selected. “Interlocked” simply means that with each
button press the previous source and LED are disconnected and are replaced by the current button
press. In logical terms the 16 switches and LED’s are “exclusive OR’d”.

With the Script Editor Tab open, and assuming you have copied/pasted the example file per
Appendix A, you will see the following:

Bl WheatNet IP GP-16P - C/Program Files/Wheatstone/WheatNetlpGp16pGui v1/scripts/interlock- 1. |i=uld=l il

Script Wizard | Script Editor ~ Device Properties

Guestl //AG_START r~
Guest2 // All code between the AG_START and AG_END tags is auto generated and | |
RackRoom 0|// WheatNet IP Script Wizard - GUI v1.0.0

?‘

E
?
7
:
P
-
2
:
P
:’:
b
:-
:

constant: ON =1

constant: OFF =0

variable: led_num =1

variable: switch = 0

variable: source = 0

variable: current_switch =0 I}
variable: last_led =0

Dt T T T T T T T T e

constant: dest_a =1 // select destination id# in router for this 16x1 line selector

nap source signal id's to buttons 1 through 16

<

I

« ; «»]

[Ln 11 col 1| GP HOST Connected |

22

7.3 - Auto-generated Script Components
Notice that the first section of the custom script has a few lines of auto-generated code. These are
minimum startup lines and must not be altered or deleted.

//AG_START

/I All code between the AG_START and AG_END tags is auto generated and should not be modified.
// WheatNet [P Script Wizard - GUI v1.0.0

//AG_HOOK TYPE="STARTUP" ACTION="MyStartupSub"

7.4 - Custom Start up Subroutine

Let’s digress for a moment- sometimes you might want your panel to startup in a special state
prior to any button actions. Or perhaps the LED’s in your design are being driven from remote
logic states and you’d like to synchronize them on power-up of the GPIP panel.

Use the Script Wizard’s Custom Action Hooks dialog to point to your startup subroutine. In the
case below we will call “MyStartupSub” subroutine when the GPIP panel powers up.

?ﬁ WheatNet IP GP-16P - C:‘Program FiIes‘ﬂheatstone/WheatNetIpGp16pGui v1/scripts/interlock-1... |ﬂi&]

Script Wizard = Script Editor = Device Properties
Guestl 5 ¥ Buttons Startup Action Hook
Guest2 5 X

¢ % Output LIOs Subroutine:

RackRoom I o o custom Action Hooks . .
:

Note: You must define all action hook subroutines in your custom script
=0 code, otherwise you will get unresolved subroutine errors when the script
is compiled.

7.5 - Example Script Structure

Now back to the Example interlock16.ss script file. The first thing you will notice in the example
script is a comment. Comments are extremely useful as they help you and anyone else working
with the script understand and decipher what is going on. Comments must always start with a
double forward slash

//this is a comment line

Comments are ignored by the compiler and can contain any characters. You can have as many
comments as you’d like in your script.

Scripts must follow a certain format in order for the compiler to evaluate them correctly. The
example script follows this format:

* AG Start code — auto-generated code from the wizard and a basic startup action.

* This code must be present even if you plan on scripting all of the button functions and
generally should not be modified. This code is only displayed in the Script Editors top
window. The top window does not allow editing.

23

* Constants and variables - define all your constants and global variables first. Example
constants are Source or Destination signal ID numbers, words that make your script
easier to read and write like ON- OFF, LEDS, etc. Constants are fixed and never change
during run time. Variables may be local or global in scope and may be modified during
runtime.

* Global variables are listed at the top along with constants and are “visible” anywhere in
the script.

* Actions and Subroutines - next come the main components of your script. It does not
matter which order you put these in but it makes sense to keep all button actions together
for readability.

e Local variables are defined within the curly braces of an action or subroutine and are only
“visible” within that action or subroutine

Let’s look at the example code in sections.

7.6 - Example Script —Variables and Constants
The example script needs to know which switch is pressed and when to light its LED. We also
have to map the destination we want to route to and define the sources to be switched.

You seldom know all the variables your script will require when you begin, so just add them here
at the top as you go. It makes sense to group certain variables according to how they are used in
the script. This can make reading and deciphering the script easier now and when you have to edit
it a year from now!

// Custom Interlock switch code
//***

*

variable //intentional error - no colon after the word variable -no variable name
constant: ON = 1

constant: OFF =0 // Constants can be mixed in with variables as you see fit.
variable: led num = 1

variable: switch =0

variable: source = 0

variable: current _switch =0

variable: last led =0

24

Comments added to the Constants section help readability. Notice how the Destination and
Sources are defined as constants. These signal ID numbers could have been “hard coded” as
numbers in the Action section but are easier to modify in the future by listing here. Additional
comments could include the Source signal names in Navigator or the constant names could even
be the Source signal names — whatever makes the most sense to you the programmer.

/3% 3 e st st s e st st s s ke stesk s ke st sk sk ke sk st sk ke skestesk s sk steosk s st st stk ke stesiese ke stesioseste sttt sttt ke st skl stk koot skekoliolokokokoskok stoloskokoskolokoskoloiokoskokok

// Map the destination you want to switch sources to here
ﬁ**

constant: dest a =00400001 // select any valid Destination id# in router for this 16x1 line selector

[k 3 e st st s s st st st s ke st sk sk e steste sk ke ke sk sk ke sheste sk s st stesieose ke stesiose ke stestese e steskeoskosteste sttt skttt kool stolotkokotolokostokokokoskolokokoskokokolokokskoiokoek

//map source signal id's to buttons 1 through 16
ﬁ***
constant: sourcel = 00400001 //change constants to any other valid Source signal id# as required
constant: source2 = 00400002

constant: source3 = 00400003

constant: source4 = 00400004

constant: source5 = 00400005

constant: source6 = 00400006

constant: source7 = 00400007

constant: source8 = 00400008

constant: source9 = 00400009

constant: sourcel0 = 00400010

constant: sourcel1 = 00400011

constant: sourcel2 = 00400012

constant: sourcel3 = 00400013

constant: sourcel4 = 00400014

constant: sourcel5 = 00400015

constant: sourcel6 = 00400016

7.7 - Example Script — Subroutines

The example script uses two subroutines — one to handle the switch presses and one to store the
last switch pressed so it’s LED can be turned OFF on a subsequent switch press. Note that a
custom startup routine was not included. Try writing a startup subroutine that figures out which
source is currently feeding “dest a” and then light the appropriate button’s LED.

The first subroutine — handle sw_press - is called by the Button Actions defined at the end of
the Script. Button Actions “pass” two variables, $1 and $2 to this subroutine.

This subroutine:
* Modifies the value of “switch” to equal $1 and “source” to equal $2.
* Turns OFF the previously selected switch’s LED.
* Calls the subroutine to store the currently selected switch number.
* Connects the currently selected source.
* Lights the LED in the currently selected switch.

This subroutine includes a “Print” statement to print a message to a Telnet window — please see
the Script de-bugging section for details on using Print and Telnet.

25

[/ sk sk ks ok ok ok sk ook ok ok

// Subroutines
//***********************

subroutine: handle _sw_press //This subroutine does most of the work.
/Tt receives switch# and source info from the button
//press actions.

switch = $1 /I $1(reads “string one”) is the switch number passed here when subroutine called by
// action.

source=$2 //$2

btn led (last led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest a is a fixed destination defined above as a constant

btn_led (switch, ON)

print ("connecting Source ID " # source # " to Dest " # dest a# ".")

The second subroutine simply receives a variable value - “switch” - and stores it. Note that this
could have been done in the “handle sw_press” subroutine, but as an exercise this illustrates
variable passing and subroutine nesting. Notice that the variable “current switch” was never used
in the script.

subroutine: store switch //

{

current_switch = §1 // string 1 passed here = value of the “switch” variable in the calling subroutine.
last led = $1 // the “last led” variable is set to = the “switch” variable.

i

7.8 - Example Script — Actions

For this example each button is given its own Press action. Release and Over-press actions were
not required. By putting the “guts” of the script behavior in Subroutines, the Actions are kept
simple and straight forward. Each button press uniquely sets the value of “switch” and “source”
and then passes those variables to the “handle sw_press” subroutine.

// Button press section action: BTN_4 PRESS
action: BTN_1_PRESS switch =4
{ source = source4
switch = 1 call handle sw_press(switch, source)
source = sourcel }
call handle_sw_press(switch, source)
} action: BTN_5 PRESS
{
action: BTN_2 PRESS switch=15
source = source5
switch =2 call handle sw_press(switch, source)
source = source2 }
call handle sw_press(switch, source)
} action: BTN_6_PRESS
action: BTN_3_PRESS switch =6
{ source = source6
switch =3 call handle_sw_press(switch, source)
source = source3 }
call handle sw_press(switch, source)
} action: BTN_7 PRESS
{

26

switch =7
source = source7
call handle sw_press(switch, source)

}
action: BTN_8 PRESS

switch=8
source = source8
call handle_sw_press(switch, source)

}

action: BTN_9 PRESS
{

switch=9
source = source9
call handle sw_press(switch, source)

h
action: BTN_10_PRESS

{

switch =10

source = sourcel0

call handle sw_press(switch, source)

}
action: BTN_11_PRESS
switch= 11

source = sourcel 1

call handle_sw_press(switch, source)

}

action: BTN 12 PRESS

27

switch = 12
source = sourcel2
call handle_sw_press(switch, source)

}
action: BTN 13 PRESS

switch =13
source = sourcel3
call handle sw_press(switch, source)

h
action: BTN_14_PRESS

switch = 14
source = sourcel4
call handle sw_press(switch, source)

}
action: BTN_15_PRESS

switch =15
source = sourcel5
call handle_sw_press(switch, source)

}
action: BTN _16_PRESS

switch =16
source = sourcel6
call handle sw_press(switch, source)

}

7.9 - Custom Scripting Suggestions

Before you embark on your scripting expedition take the time to map out the requirements in a
spread sheet or note pad. Spending a bit of time in the planning phase can save you some
headaches later on and will at least make it easier to stay focused on coding once you start getting
deep into it. Also writing out the requirements, (i.e. Turn the xx ON when yy AND zz are true
OR nn is NOT true) can be helpful for scripting complex logic statements.

The GP Scripting language is a cross between the C and Basic programming languages. Correct
syntax is essential, and incorrect syntax is a common source of compiler errors, so be sure to
carefully check case sensitive spelling, braces and parentheses placement, etc., whenever you get
a compiler error.

7.10 - Scripting Router Control
By now you have been exposed to many of the router control functions available. You can review
in detail the complete set of Router Functions available by opening the Router Functions section

of the Help file. There you will find information on these and many more, like Utility Mixer,
Surface, and Blade control.

Router Function Description

connect Makes a cross-point connection in the router.

disconnect Breaks a cross-point connection in the router.

lock Locks a cross-point connection in the router.

unlock Unlocks a cross-point connection in the router.

connection Queries a destination to find out what source is connected to it.

locked Queries a destination to find out if it is locked.

fire_salvo Fires a pre-defined Salvo - requires the Salvo ID number.

find_src Returns the source signal ID number when you know the source name and
location.

find dst Returns the destination signal ID when you know the dest name and location.

find salvo Returns a Salvo ID number when you know the Salvo name.

lio get Returns the current value — 1 or 0 — of a logic signal in the router.

lio set Sets the value — 1 or 0 — of a logic signal in the router.

7.11 - Scripting Surface Control
Control Surfaces may be directly controlled using built in surface script functions. You can find
detailed information on these functions in the Help file’s “Surface Functions” section.

Surface Functions can be divided into two groups. The first set of basic functions control the
rudimentary tasks of taking a surface preset, getting a fader’s ON status, and turning a fader
channel ON. The second “advanced” set allows you to utilize the Automation Controller protocol
built into each surface.

7.12 - Basic Surface functions
These functions may be used directly in your script and require a minimum amount of scripting

knowledge.

surf take event — takes an “Event” stored on a surface. The surface ID parameter is an index into
the surface list entered in the Device Properties form.

surf _get input_on — returns the channel ON status; 1= ON, 0 = OFF.

surf set_input on — turns a channel ON or OFF.

28

7.13 - Advanced Surface Functions

These functions require just a bit more programming knowledge to implement correctly. The
function “surf talk” is very powerful because it allows you to use all of the surface’s Automation
Control Interface (ACI) command set. The automation protocol is ASCII based, which makes it
easy to incorporate ACI commands using the built in surface functions. Virtually every switch,
fader level, knob setting, etc., is accessible. The ACI commands are available on an “as needed”
basis for Wheatstone customers. Please contact a Customer Support representative for details on
acquiring this information.

surf talk — use this to send ACI commands to a surface.
surf_string — use this to parse a reply string.

7.14 - Example surf talk Commands
If you are reading this then your curiosity must be piqued, so here are a couple of examples of the
syntax required for use with surf talk.

surf talk (1, “INPUT:7[FADER:192”) // sets fader 7 to 0dB on surface 1.

surf talk (2, “INPUT:4|ON:0”) // turns channel 4 OFF on surface 2.

surf talk (3, (“INPUT:5|CUE:1”) //puts fader 5 in CUE on surface 3.

The Surf ID used in the examples above comes from the list of Surfaces defined in Device
Properties. All of these ACI commands generate replies from the surface that may be stored,
parsed, and acted upon in your script. Fader values fall into the range of 0-256. Note that nominal
dB level conversions to integers suitable for use with “surf talk” vary by surface type and may be
calculated using special set of equations, which are available on request along with the ACI
commands.

29

8 GPIP-16P Scripting Language Overview

The following Script Language overview may be found in the GPIP Configuration Tool’s Help
file. The Overview and Structure sections are included for reference and will give you an idea
how a script is built.

Please refer to the Help File for specific details on writing Statements, Boolean Expressions, etc.

The scripting language used to define virtual machine instructions for the programmable button
panel is a very simple language to learn. If you are familiar with C or Basic or any number of any
other languages you should feel at ease writing scripts for the GPIP in no time.

8.1 - Case Sensitivity

Everything in a script file is case sensitive. The identifiers "xYz" and "xyz" are not equivalent.

8.2 - Comments

A comment starts with two forward slash characters. Once a comment starts all characters are
ignored until the end of the current line. A comment can also start with /* and end with */. The
following example shows some comments.

// This is a comment
// More comments can make your script easier to read

X =x + 1 // Comments can end a line of script code

/*
This is a
multiline comment

*/

8.3 - Actions

Actions are the basic execution unit of a script. A typical script will contain several action
definitions. Events that occur within the GPIP-16P will trigger an action.

Action names can be any unique non-reserved identifier. An identifier can be up to 32 characters
long. The first character must be a letter; the following characters may be letters, numbers or the
underscore character (" _").

8.4 - Global Variables

Scripts may have an unlimited number of global variables. Global variables have visibility
throughout the script file. Every action and subroutine has visibility to a global variable. Global
variables retain their values between execution of each action.

30

Variable names can be any unique non-reserved identifier. An identifier can be up to 32
characters long. The first character must be a letter; the following characters may be letters,
numbers or the underscore character (" ").

All variables in the scripts are treated as character strings. You can define a variable (i.e. x),
assign a text string to x, perform some string operations on x, then assign a number to x, and
perform mathematical operations on x.

8.5 - Local & Static Local Variables

Script actions and subroutines may have an unlimited number of local variables. Local variables
have visibility throughout the action or subroutine, but do not have visibility from within other
actions or subroutines. Static local variables retain their values between execution of each action
or subroutine.

8.6 - Constants

Scripts may have an unlimited number of constants. Constants have visibility throughout the
script file. Constants have all the same properties as global variables, except that you can not
assign a value to a constant at runtime.

Constant names can be any unique non-reserved identifier. An identifier can be up to 32
characters long. The first character must be a letter; the following characters may be letters,
numbers or the underscore character ("_").

8.7 - Arrays
Scripts may have an unlimited number of global arrays. Global arrays have visibility throughout
the script file. Each element of an array has all the same properties as global variables.

When an array is declared an array dimension is also declared. When indexing elements of an
array, the first element has an index value of zero. This is the same as arrays in the C language.

Out of bounds write access to an array will be ignored. Out of bounds read access to an array will
return an empty string.

Array names can be any unique non-reserved identifier. An identifier can be up to 32 characters
long. The first character must be a letter; the following characters may be letters, numbers or the
underscore character (" _").

31

9 GPIP-16P Scripting Language Structure

9.1 - Script Structure

The structure of a script file is shown below. Global variable declarations must be done at the
start of the file before any actions are defined. There can be any number of actions defined in the
script file. Comments may appear at any point in the script file.

constant declarations

variable declarations

array declarations

action bodies

subroutine bodies

9.2 - Constant Declarations
A constant declaration begins with the keyword "constant:" followed by the constant name and a
value assignment. The following example shows the structure of constant declarations.

constant: name = number
constant: name = "string"

The following example shows the declaration of two constants. The first global constant "c1" is
initialized with the numeric value of 1000. The second constant "c2" is initialized with the string
"Have a nice day."

constant: cl = 1000
constant: c2 = "Have a nice day."

9.3 - Global Variable Declarations

A global variable declaration begins with the keyword "variable:" and the variable name. After
the variable name an optional assignment may be specified. The following example shows the
structure of global variable declarations.

variable: name

variable: name = number

variable: name = "string"

The following example shows the declaration of three global variables. The first global variable
"v1" is not initialized. The virtual machine will initialize this variable to an empty string. The
second global variable "v2" is initialized with the numeric value of 10. The third global variable
"v3" is initialized with the string "Hello World."

variable: vl

variable: v2 = 10

variable: v3 = "Hello World"

32

9.4 - Global Array Declarations

A global array declaration begins with the keyword "array:" and the array name. After the array
name an array dimension must be specified. Arrays may be one or two dimensional. The
following example shows the structure of global array declarations.

array: name [size]

array: name [size] [size]

The following example shows the declaration of two global arrays. The first global array "al" has
ten elements and the second global array "a2" has 100 elements.

array: al[l1l0]

array: az2[100]

The following example shows the declaration of a two dimensional global array.

array: al[l10][4]

Note: The virtual machine treats all arrays as one dimensional. The compiler will flatten all two
dimensional array accesses into a single dimension linear array.

9.5 - Local & Static Local Variable Declarations

A local variable declaration begins with the keyword "variable:" and the variable name. After the
variable name an optional assignment may be specified. The following example shows the
structure of local variable declarations.

variable: name

variable: name = number

variable: name = "string"

The following example shows the structure of static local variable declarations.

static variable: name
static variable: name = number
static variable: name = "string"

The example in the Action Bodies section shows the use of a temporary and a static local
variable.

9.6 - Action Bodies

An action declaration begins with the keyword "action:" followed by the action name, then an
opening curly brace. Any number of statements may reside within the action body. The end of an
action is indicated by a closing curly brace. The following example shows the structure of an
action body.

action: name

{

local variable declarations
statements

33

The following example shows a typical action body. This action is named "BTN 1 PRESS." It
has two local variables. The variable "count" is a static variable that will be incremented each
time the action is executed. After the count is incremented a message string is built up with the
count included and the message is printed to the console (a Telnet window).

// This action will print the messages:

// SVM: This action has been executed 1 times.
// SVM: This action has been executed 2 times.
// SVM: This action has been executed 3 times.
// SVM: This action has been executed 4 times.
// etc

action: BTN 1 PRESS
{

static variable: count = 0
variable: message

count = count + 1
message = "This action has been executed " # count # " times."
print (message)

9.7 - Action Parameters

When an action is executed a set of four parameters will be passed to the action. All four
parameters are not always used. If a particular action type does not use all four parameters, the
unused parameters will contain empty strings.

The meaning of the parameters is specified by the source of the action, see the section action
types. Action parameters are accessed by the built-in variable names "$1," "$2," "$3," and "$4."

9.8 - Subroutine Bodies

A subroutine declaration begins with the keyword "subroutine:" followed by the subroutine name,
then an open curly brace. Within the subroutine body are any number of statements. The end of a
subroutine is indicated by a closing curly brace. The following example shows the structure of a
subroutine body.

subroutine: name

{
local variable declarations
statements
optional return

9.9 - Subroutine Parameters

When a subroutine is executed a set of four parameters will be passed to the subroutine. All four
parameters are not always used. If a particular action type does not use all four parameters, the
unused parameters will contain empty strings.

Subroutine input parameters are accessed by the built-in variable names "$1," "$2," "$3," and
"$4." The following example shows the use of parameters within subroutines.

34

A Subroutine may return one parameter to the caller. The caller will access the returned
parameter through the built-in variable name "$0." This parameter will remain valid until the next
subroutine call is made.

subroutine: sum up 1

{
var sum
sum = S$1 # S$2 # $3
return sum

}

subroutine: sum up 2
{

return ($1 + $2 + $3 + $4)
}

subroutine: print sum

{

print sum ("Sum = " # S$1)

// This action will result in the followinfg message on the console:
// SVM: Hello World
// SVM: Sum = 100
/== s
action: test action
{
call sum up 1 ("Hello", " ", "World")
print ($0)
call sum up 2 (10, 20, 30, 40)
call print sum (S0)

35

1 0 Script Debugging

If you have delved into writing your own scripts you will inevitably have to debug them -
if only to root out spelling or other minor syntax errors. Programming and debugging go
hand in hand. Fortunately there are a couple of very useful tools to aid you in your time
of need.

10.1 - Finding Compiler Errors

The “jump to error” feature in the Script Editor allows you to click on a reported
compiler error in the GPIP tool’s Output window to jump to the line in the Script near or
where the error is present. This feature is handy for tracking down bugs in scripts that
will not compile. A word of caution, there are literally endless ways to write bad code, so
this feature will usually get you close to the line with an error and not on the exact error.

// Map the destination you want to switch sources to here =

X wheatNet IP Programmable Panel Compiler "gwipppc" version 1.2.0
15} Copyright 2005,2009 Wheatstone Corp, All rights reserved.
(@l Compiling: C:/Program Files/wWheatstone/WheatNetIpGpl6pGui vl/scripts/interlock-16.ss

B ERROR (11ne:19) syntax error, unexpected gcNAME, expecting ':'

Sorry... -

18

col 9|| GP HOST Connected \4

Clicking right on the compiler ERROR line shown above will cause the Script Editor to
jump the cursor to the approximate error location — shown below.

1|3
//AG_END

4 4>

constant ON = 1 //<<< Intentional error with missing colon after the constant declaration.
cbnstant: OFF=0

variable: led_num =1

variable: switch =0

The marked line is ok — error is just above it.

36

10.2 - Third Party Editors

If you plan on doing a lot of scripting you might consider using a third party
programming editor. Notepad++ is a nice freeware editor. When you open a GPIP script
in Notepad++, you can choose a “Language” skin, like “Flash actionscript,” that will give
you line numbers and a context sensitive text color scheme. You will still have to open
the file in the GPIP-16P tool before you compile — be sure to Save in the editor first.

Do an internet search for “Notepad++” to download this editor.

10.3 - Using “Print” and Telnet to Debug

The Print statement may be inserted anywhere into the script code to print messages, variable
values, etc., to a Telnet window. This feature is extremely useful for tracking down bugs or
displaying script behavior in compiled code running on the GPIP-xx panel.

Here’s how it works.

Add a Print statement anywhere in a subroutine or action. Add it to a button press action to print
every time the button is pressed or released.

Example Print Statements:
Print (your variable name)
Print (“Put text in quotes”™)
Print (“Put text in quotes and ” #variable# “ use the # sign to concatenate variables and text™)

To Telnet to the GPIP panel you need to know three things:
e [P address of the GPIP-xx panel
¢ User Name: knockknock
* Password: whosthere

Use any Telnet client or open a Command Prompt Window and type:
telnet 192.168.87.221 (or whatever the IP address of your GPIP-xx panel is).

Telnet 192.168.8.221 N -|o) x|

Ctr1-D — Exit
Ctr1-E — Toggle Echo

Please log in..

Toggle the Username : knockl-mock
ECHO OFF Password: whosthere

and enter
ile lcome knockknock
the user
name and Software Uersion: 1.0.3 Built:Oct 18 2086 at 18:33:04
. Panel Type: GP-16P
password; FPGA Uersion: BAB2
you should
see a screen Available Commands:
St urite uptime
similar to debug
this one: . ot

ip o sstart svar
sshow slvlist

{command>" for help on a specific command.

37

Once you are logged on you need to toggle Script Debugging ON.
To toggle Script Debug ON type:

sdbg 1 <Enter>
To turn it OFF type:

sdbg 0 <Enter>

Telnet 192.168.8.221 -|o|]

"help <command>" for help on a specific command.
'¢*" to repeat the last command.

SCRIPT DEBUG is ON

—> SUM: Subroutine—handle_sw_press

SUM: connecting Source ID 11 to Dest 1.
SUM: Subroutine—handle_sw_press

SUM: connecting Source ID 112 to Dest 1.

Now when you press a button on the GPIP-xx panel running the Example interlock16.ss script,
you will see the Print statements as they are executed.

38

Appendix A

A1l - Example Custom Script File — interlock16.ss
To open this file in the GPIP-16P Configuration Tool do the following:

1 - Start the GPIP-16P Configuration Tool software.

2 - Click File-New...

3 - Click File-Save as..., enter interlock16 as the filename, and click Save.

4 - Select the Script Editor tab.

5 - Copy and paste everything between the /START HERE and //END HERE lines directly into
the bottom window of the Script Editor.

6 - Click File-Save.

J i e e e LT

/I Custom Interlock switch code —file interlock16.ss — email paulpicard@wheatstone.com with any
questions.
ﬁ**
constant: ON = 1

constant: OFF =0

variable: led num = 1

variable: switch =0

variable: source = 0

variable: current_switch = 0

variable: last led =0

J i e e e LT

// Map the destination you want to switch sources to here
”**

constant: dest_a = “00400001” // select YOUR destination id# in router for this 16x1 line selector.

N***

//map source signal id's to buttons 1 through 16
N***
constant: sourcel = “00400001” //change each Source signal id# as required for YOUR system.
constant: source2 = “00400002”

constant: source3 = “00400003”

constant: source4 = “00400004”

constant: sourceS = “00400005”

constant: source6 = “00400006”

constant: source7 = “00400007”

constant: source8 = “00400008”

constant: source9 = “00400009”

constant: sourcel0 = “00400010”

constant: sourcell = “00400011”

constant: sourcel2 = “00400012”

constant: sourcel3 = “00400013”

constant: sourcel4 = “00400014”

constant: sourcel5 = “00400015”

constant: sourcel6 = “00400016”
[Rk Rk R

39

// Subroutines
//***********************

subroutine: handle sw_press //This subroutine does most of the work.
//Tt receives switch# and source info from the button
//press actions.

{
print ("Subroutine-handle sw_press")
switch = $1
source = $2

btn_led (last_led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest a is a fixed destination defined above as a constant
btn_led (switch, ON)

print ("connecting Source ID " # source # " to Dest " # dest a# ".")

subroutine: store_switch

{

current_switch = $1
last led = $1

[s sk sk sk Rk Rk Rk ko

// Button press section
// sk sk sk sfe sie sk sk sie sk sfe sk sk skeoske sk sfeosk sk sk sk sk sk skok sk skok

action: BTN 1 PRESS

{

switch =1

source = sourcel

call handle sw_press(switch, source)

H

action: BTN 2 PRESS
{

switch =2

source = source2
call handle sw_press(switch, source)

H

action: BTN _3 PRESS
{

switch =3

source = source3
call handle_sw_press(switch, source)

H

action: BTN_4 PRESS
{

switch = 4

40

source = source4
call handle_sw_press(switch, source)

}

action: BTN _5 PRESS

{

switch =5

source = sources

call handle sw_press(switch, source)

}

action: BTN_6 PRESS

{

switch = 6

source = source6

call handle sw_press(switch, source)

}

action: BTN _7 PRESS

{

switch =7

source = source?/

call handle sw_press(switch, source)

}

action: BTN_8 PRESS
{

switch =8
source = source8
call handle sw_press(switch, source)

}

action: BTN_9 PRESS
{

switch =9
source = source9
call handle sw_press(switch, source)

}

action: BTN _10 PRESS
{

switch = 10
source = sourcel(
call handle sw_press(switch, source)

}

action: BTN _11 PRESS
{

switch =11
source = sourcel 1
call handle_sw_press(switch, source)

}

action: BTN 12 PRESS

switch = 12

source = sourcel2
call handle_sw_press(switch, source)

H

action: BTN 13 PRESS
{

switch = 13

source = sourcel3
call handle sw_press(switch, source)

H

action: BTN 14 PRESS
{

switch = 14

source = sourcel4
call handle sw_press(switch, source)

H

action: BTN _15 PRESS
{

switch = 15

source = sourcel5
call handle sw_press(switch, source)

}

action: BTN_16 PRESS
switch =16

source = sourcel6
call handle sw_press(switch, source)

}

42

	TITLE PAGES
	Page 1
	Page 2

	TABLE OF CONTENTS
	Page 1
	Page 2
	Page 3

	GPC-IP HARDWARE
	General Information
	GP-3 Headphone Panel
	 Replacement Parts
	GP-3 Pinouts
	GP-3 Schematic
	GP-3 Load Sheet

	GP-3-SK Headphone Panel
	Replacement Parts
	GP-3-SK Pinouts

	GP-4S 4 Switch Mic Control Panel
	Replacement Parts
	GP-4S Pinouts
	GP-4S Schematic
	GP-4S Load Sheet

	GP-4W 4 Switch Control Panel
	Replacement Parts
	GP-4W Pinouts
	GP-4W Schematic
	GP-4W Load Sheet

	GPIP-8 8 Switch Programmable Switch Panel
	Replacement Parts
	GPIP-8 Pinouts
	GPIP-8 Schematic
	GPIP-8 Load Sheet
	GPC-1 Schematic
	Page 1 of 3
	Page 2 of 3
	Page 3 of 3

	GPC-1 Load Sheet

	GPIP-16 16 Switch Programmable Switch Panel
	Replacement Parts
	GPIP-16 Pinouts
	GPIP-16 Schematic
	GPIP-16 Load Sheet

	GPC Chassis Full Size Template
	GP-3 Headphone Panel Full Size Template
	GPC-IP System Parts List
	GPC-IP Installation Kit Parts List

	APPENDIX-WheatNet-IP GPIP-16P CONFIGURATION TOOL
	Title Page
	Table of Contents - i
	Table of Contents - ii
	1. Introduction
	1.1 - GPIP-xx Hardware Compatibility
	1.2 - Panel Types
	1.3 -Power Supply
	1.4 -LED's

	2. What You Need to Get Started
	2.1 - WheatNet IP GP-16P Configuration Tool Software
	2.2 - Physical Network Connection
	2.3 - IP Address Settings
	2.3.1 - Changing the GP panel's IP Address

	2.4 - WheatNet-IP Navigator Software
	2.5 - WheatNet-IP GP-16P Help File

	3. Using GPIP-16P Configuration Tool Software
	3.1 - Programming Procedure Summary
	3.2 - Adding Devices
	3.3 - Selecting Devices
	3.4 - Create a New Script File
	3.5 - Script Wizard Button Functions
	3.6 - Script Wizard Output LIO Functions
	3.7 - Script Wizard Custom Action Hook
	3.8 - Compile the Script
	3.9 - Starting the Script
	3.10 - Testing
	3.11 - Reviewing the Script Wizard Code

	4. Configuring Device Properties
	4.1 - Device Properties Tab
	4.2 -Host BLADE Setting
	4.3 -Surface Configuration
	4.4 - Audio Processors
	4.5 - Soft LIO Configuration
	continued

	5. LIO Example Using Soft LIO's
	5.1 - Configure the Source Signal in Navigator
	5.2 - Assign GPIP Soft LIO's
	5.3 - Create the Mic Control Script Using Script Wizard
	5.4 - Reviewing the Script Wizard Code

	6. What is the Script Editor?
	6.1 - Script Editor Features
	6.2 - Third Party Editors

	7. Creating Custom Scripts
	7.1 - Getting the Example File
	7.2 - Example Script Design
	7.3 - Auto-generated Script Components
	7.4 - Custom Start up Subroutine
	7.5 - Example Script Structure
	7.6 - Example Script - Variable and Constants
	7.7 - Example Script - Subroutines
	7.8 - Example Script - Actions
	continued

	7.9 - Custom Scripting Suggestions
	7.10 - Scripting Router Control
	7.11 - Scripting Surface Control
	7.12 - Basic Surface Functions
	7.13 - Advanced Surface Functions
	7.14 - Example surf_talk Commands

	8. GPIP-16P Scripting Language Overview
	8.1 - Case Sensitivity
	8.2 - Comments
	8.3 - Actions
	8.4 - Global Variables
	8.5 - Local & Static Local Variables
	8.6 - Constants
	8.7 - Arrays

	9. GPIP-16P Scripting Language Structure
	9.1 - Script Structure
	9.2 - Constant Declarations
	9.3 - Global Variable Declarations
	9.4 - Global Array Declarations
	9.5 - Local & Static Local Variable Declarations
	9.6 - Action Bodies
	9.7 - Action Parameters
	9.8 - Subroutine Bodies
	9.9 - Subroutine Parameters
	continued
	continued

	10. Script Debugging
	10.1 - Finding Compiler Errors
	10.2 - Third Party Editor
	10.3 - Using "Print" and Telnet to Debug
	continued

	Appendix A
	A1 - Example Custom Script File
	continued
	continued
	continued

